DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of Antarctic and Arctic Single-Layer Stratiform Mixed-Phase Cloud Properties Using Ground-Based Remote Sensing Measurements

Abstract

Ground-based remote sensing measurements from the Atmospheric Radiation Measurement Program (ARM) West Antarctic Radiation Experiment (AWARE) campaign at the McMurdo station and the ARM North Slope of Alaska (NSA) $$Utqia\dot{g}vik$$ site are used to retrieve and analyze single-layer stratiform mixed-phase cloud macro- and microphysical properties for these different polar environments. Single-layer stratiform mixed-phase clouds have annual frequencies of occurrence of ~14.7% at $$Utqia\dot{g}vik$$ and ~7.3% at McMurdo, with the highest occurrences in early autumn. Compared to $$Utqia\dot{g}vik$$, stratiform mixed-phase clouds at McMurdo have overall higher and colder cloud-tops, thicker ice layer depth, thinner liquid- dominated layer depth, and smaller liquid water path. These properties reflect clear seasonal variations. Supercooled liquid fraction at McMurdo is greater than at $$Utqia\dot{g}vik$$ because, at a given temperature, McMurdo clouds have comparable liquid water paths but smaller ice water paths. Assessment of retrieved cloud microphysical properties show that, compared to $$Utqia\dot{g}vik$$, stratiform mixed-phase clouds at McMurdo have greater liquid droplet number concentration, smaller layer-mean effective radius, and smaller ice water content and ice number concentration at a given cloud-top temperature. These relationships may be related to different aerosol loading and chemical composition, and environment dynamics. Findings introduced in this report can be used as observational constraints for model representations of stratiform mixed-phase clouds.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [1]; ORCiD logo [1]; ORCiD logo [3];  [4]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States)
  3. Univ. of California, San Diego, CA (United States)
  4. Univ. of Wyoming, Laramie, WY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Science Foundation (NSF)
OSTI Identifier:
1561243
Alternate Identifier(s):
OSTI ID: 1560886
Report Number(s):
BNL-212051-2019-JAAM
Journal ID: ISSN 2169-897X
Grant/Contract Number:  
SC0012704; SC0017981; SC0018926; DE‐SC0012704; DE‐SC0017981; DE‐SC0018926
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 124; Journal Issue: 17-18; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; polar; stratiform mixed‐phase clouds; remote sensing; retrievals; cloud macrophysical and microphysical properties; supercooled liquid fraction

Citation Formats

Zhang, Damao, Vogelmann, Andrew, Kollias, Pavlos, Luke, Edward, Yang, Fan, Lubin, Dan, and Wang, Zhien. Comparison of Antarctic and Arctic Single-Layer Stratiform Mixed-Phase Cloud Properties Using Ground-Based Remote Sensing Measurements. United States: N. p., 2019. Web. doi:10.1029/2019JD030673.
Zhang, Damao, Vogelmann, Andrew, Kollias, Pavlos, Luke, Edward, Yang, Fan, Lubin, Dan, & Wang, Zhien. Comparison of Antarctic and Arctic Single-Layer Stratiform Mixed-Phase Cloud Properties Using Ground-Based Remote Sensing Measurements. United States. https://doi.org/10.1029/2019JD030673
Zhang, Damao, Vogelmann, Andrew, Kollias, Pavlos, Luke, Edward, Yang, Fan, Lubin, Dan, and Wang, Zhien. Fri . "Comparison of Antarctic and Arctic Single-Layer Stratiform Mixed-Phase Cloud Properties Using Ground-Based Remote Sensing Measurements". United States. https://doi.org/10.1029/2019JD030673. https://www.osti.gov/servlets/purl/1561243.
@article{osti_1561243,
title = {Comparison of Antarctic and Arctic Single-Layer Stratiform Mixed-Phase Cloud Properties Using Ground-Based Remote Sensing Measurements},
author = {Zhang, Damao and Vogelmann, Andrew and Kollias, Pavlos and Luke, Edward and Yang, Fan and Lubin, Dan and Wang, Zhien},
abstractNote = {Ground-based remote sensing measurements from the Atmospheric Radiation Measurement Program (ARM) West Antarctic Radiation Experiment (AWARE) campaign at the McMurdo station and the ARM North Slope of Alaska (NSA) $Utqia\dot{g}vik$ site are used to retrieve and analyze single-layer stratiform mixed-phase cloud macro- and microphysical properties for these different polar environments. Single-layer stratiform mixed-phase clouds have annual frequencies of occurrence of ~14.7% at $Utqia\dot{g}vik$ and ~7.3% at McMurdo, with the highest occurrences in early autumn. Compared to $Utqia\dot{g}vik$, stratiform mixed-phase clouds at McMurdo have overall higher and colder cloud-tops, thicker ice layer depth, thinner liquid- dominated layer depth, and smaller liquid water path. These properties reflect clear seasonal variations. Supercooled liquid fraction at McMurdo is greater than at $Utqia\dot{g}vik$ because, at a given temperature, McMurdo clouds have comparable liquid water paths but smaller ice water paths. Assessment of retrieved cloud microphysical properties show that, compared to $Utqia\dot{g}vik$, stratiform mixed-phase clouds at McMurdo have greater liquid droplet number concentration, smaller layer-mean effective radius, and smaller ice water content and ice number concentration at a given cloud-top temperature. These relationships may be related to different aerosol loading and chemical composition, and environment dynamics. Findings introduced in this report can be used as observational constraints for model representations of stratiform mixed-phase clouds.},
doi = {10.1029/2019JD030673},
journal = {Journal of Geophysical Research: Atmospheres},
number = 17-18,
volume = 124,
place = {United States},
year = {Fri Aug 30 00:00:00 EDT 2019},
month = {Fri Aug 30 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Clouds at Arctic Atmospheric Observatories. Part II: Thermodynamic Phase Characteristics
journal, March 2011

  • Shupe, Matthew D.
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2468.1

Variability of mixed-phase clouds in the Arctic with a focus on the Svalbard region: a study based on spaceborne active remote sensing
journal, January 2015

  • Mioche, G.; Jourdan, O.; Ceccaldi, M.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 5
  • DOI: 10.5194/acp-15-2445-2015

Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring–summer transition in May 2014
journal, January 2018

  • Herenz, Paul; Wex, Heike; Henning, Silvia
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 7
  • DOI: 10.5194/acp-18-4477-2018

Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds
journal, September 2007

  • Korolev, Alexei
  • Journal of the Atmospheric Sciences, Vol. 64, Issue 9
  • DOI: 10.1175/JAS4035.1

Investigation of the Diurnal Variation of Marine Boundary Layer Cloud Microphysical Properties at the Azores
journal, December 2014


The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE: AEROSOL EFFECTS ON ARCTIC STRATUS
journal, August 2012

  • Jackson, Robert C.; McFarquhar, Greg M.; Korolev, Alexei V.
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D15
  • DOI: 10.1029/2012JD017668

The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification
journal, May 2019

  • Wendisch, Manfred; Macke, Andreas; Ehrlich, André
  • Bulletin of the American Meteorological Society, Vol. 100, Issue 5
  • DOI: 10.1175/BAMS-D-18-0072.1

Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA
journal, February 2006

  • Shupe, Matthew D.; Matrosov, Sergey Y.; Uttal, Taneil
  • Journal of the Atmospheric Sciences, Vol. 63, Issue 2
  • DOI: 10.1175/JAS3659.1

Vertical distribution of microphysical properties of Arctic springtime low-level mixed-phase clouds over the Greenland and Norwegian seas
journal, January 2017

  • Mioche, Guillaume; Jourdan, Olivier; Delanoë, Julien
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 20
  • DOI: 10.5194/acp-17-12845-2017

Seasonal variations of Antarctic clouds observed by CloudSat and CALIPSO satellites: ANTARCTIC CLOUDS, CLOUDSAT AND CALIPSO
journal, February 2012

  • Adhikari, Loknath; Wang, Zhien; Deng, Min
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D4
  • DOI: 10.1029/2011JD016719

Resilience of persistent Arctic mixed-phase clouds
journal, December 2011

  • Morrison, Hugh; de Boer, Gijs; Feingold, Graham
  • Nature Geoscience, Vol. 5, Issue 1
  • DOI: 10.1038/ngeo1332

The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design
journal, January 2014

  • Tjernström, M.; Leck, C.; Birch, C. E.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 6
  • DOI: 10.5194/acp-14-2823-2014

Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions
journal, March 2014

  • Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander
  • Journal of Advances in Modeling Earth Systems, Vol. 6, Issue 1
  • DOI: 10.1002/2013MS000282

Indirect and Semi-direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds
journal, February 2011

  • McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 2
  • DOI: 10.1175/2010BAMS2935.1

The Mixed-Phase Arctic Cloud Experiment
journal, February 2007

  • Verlinde, J.; Harrington, J. Y.; McFarquhar, G. M.
  • Bulletin of the American Meteorological Society, Vol. 88, Issue 2
  • DOI: 10.1175/BAMS-88-2-205

Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data
journal, January 2008

  • Heymsfield, Andrew J.; Protat, Alain; Bouniol, Dominique
  • Journal of Applied Meteorology and Climatology, Vol. 47, Issue 1
  • DOI: 10.1175/2007JAMC1606.1

Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics
journal, January 2009

  • Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.
  • Journal of Geophysical Research, Vol. 114, Issue D4
  • DOI: 10.1029/2008JD010782

The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations
journal, January 2011

  • Wood, R.; Mechoso, C. R.; Bretherton, C. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 2
  • DOI: 10.5194/acp-11-627-2011

Unique manifestations of mixed‐phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica
journal, March 2016

  • Scott, Ryan C.; Lubin, Dan
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067246

Observational constraints on mixed-phase clouds imply higher climate sensitivity
journal, April 2016


Arctic multilayered, mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra: ARCTIC MULTILAYERED CLOUD PROCESSES
journal, December 2013

  • Verlinde, Johannes; Rambukkange, Mahlon P.; Clothiaux, Eugene E.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 23
  • DOI: 10.1002/2013JD020183

Intercomparison of the cloud water phase among global climate models: CLOUD WATER PHASE IN GCMs
journal, March 2014

  • Komurcu, Muge; Storelvmo, Trude; Tan, Ivy
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 6
  • DOI: 10.1002/2013JD021119

On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs: CLOUD COVER, MIXED-PHASE, AND ALBEDO
journal, May 2016

  • McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.
  • Journal of Advances in Modeling Earth Systems, Vol. 8, Issue 2
  • DOI: 10.1002/2015MS000589

The ARM North Slope of Alaska (NSA) Sites
journal, April 2016


Using surface remote sensors to derive radiative characteristics of Mixed-Phase Clouds: an example from M-PACE
journal, January 2011


Distinct Contributions of Ice Nucleation, Large-Scale Environment, and Shallow Cumulus Detrainment to Cloud Phase Partitioning With NCAR CAM5
journal, January 2018

  • Wang, Yong; Zhang, Damao; Liu, Xiaohong
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 2
  • DOI: 10.1002/2017JD027213

A Case Study of a Ross Ice Shelf Airstream Event: A New Perspective*
journal, November 2009

  • Steinhoff, Daniel F.; Chaudhuri, Saptarshi; Bromwich, David H.
  • Monthly Weather Review, Vol. 137, Issue 11
  • DOI: 10.1175/2009MWR2880.1

Studying Altocumulus with Ice Virga Using Ground-Based Active and Passive Remote Sensors
journal, April 2004


The Climate of the McMurdo, Antarctica, Region as Represented by One Year of Forecasts from the Antarctic Mesoscale Prediction System
journal, April 2005

  • Monaghan, Andrew J.; Bromwich, David H.; Powers, Jordan G.
  • Journal of Climate, Vol. 18, Issue 8
  • DOI: 10.1175/JCLI3336.1

Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
journal, February 2018

  • Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 11
  • DOI: 10.1073/pnas.1721627115

The Retrieval of Ice Water Content from Radar Reflectivity Factor and Temperature and Its Use in Evaluating a Mesoscale Model
journal, February 2006

  • Hogan, Robin J.; Mittermaier, Marion P.; Illingworth, Anthony J.
  • Journal of Applied Meteorology and Climatology, Vol. 45, Issue 2
  • DOI: 10.1175/JAM2340.1

Retrieving Liquid Wat0er Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers
journal, November 2007

  • Turner, David D.; Clough, Shepard A.; Liljegren, James C.
  • IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, Issue 11
  • DOI: 10.1109/TGRS.2007.903703

The Growth of Atmospheric Ice Crystals: A Summary of Findings in Vertical Supercooled Cloud Tunnel Studies
journal, June 1999


Deriving Arctic Cloud Microphysics at Barrow, Alaska: Algorithms, Results, and Radiative Closure
journal, July 2015

  • Shupe, Matthew D.; Turner, David D.; Zwink, Alexander
  • Journal of Applied Meteorology and Climatology, Vol. 54, Issue 7
  • DOI: 10.1175/JAMC-D-15-0054.1

Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes
journal, April 2006


Persistence of orographic mixed-phase clouds: OROGRAPHIC MIXED-PHASE CLOUDS
journal, October 2016

  • Lohmann, U.; Henneberger, J.; Henneberg, O.
  • Geophysical Research Letters, Vol. 43, Issue 19
  • DOI: 10.1002/2016GL071036

Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties
journal, March 2011

  • Shupe, Matthew D.; Walden, Von P.; Eloranta, Edwin
  • Journal of Applied Meteorology and Climatology, Vol. 50, Issue 3
  • DOI: 10.1175/2010JAMC2467.1

Overview of Arctic Cloud and Radiation Characteristics
journal, August 1996


A Technique for Autocalibration of Cloud Lidar
journal, May 2004


Antarctic Cloud Macrophysical, Thermodynamic Phase, and Atmospheric Inversion Coupling Properties at McMurdo Station: I. Principal Data Processing and Climatology
journal, June 2018

  • Silber, Israel; Verlinde, Johannes; Eloranta, Edwin W.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 11
  • DOI: 10.1029/2018JD028279

Humidity trends imply increased sensitivity to clouds in a warming Arctic
journal, December 2015

  • Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10117

Arctic cloud macrophysical characteristics from CloudSat and CALIPSO
journal, September 2012


High Spectral Resolution Lidar
book, January 2006


A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes
journal, January 2012

  • Fridlind, Ann M.; van Diedenhoven, Bastiaan; Ackerman, Andrew S.
  • Journal of the Atmospheric Sciences, Vol. 69, Issue 1
  • DOI: 10.1175/JAS-D-11-052.1

Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models: ICE ASPECT INFLUENCES ON CLOUDS
journal, November 2011

  • Sulia, Kara J.; Harrington, Jerry Y.
  • Journal of Geophysical Research: Atmospheres, Vol. 116, Issue D21
  • DOI: 10.1029/2011JD016298

Central West Antarctica among the most rapidly warming regions on Earth
journal, December 2012

  • Bromwich, David H.; Nicolas, Julien P.; Monaghan, Andrew J.
  • Nature Geoscience, Vol. 6, Issue 2
  • DOI: 10.1038/ngeo1671

Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: single-layer cloud
journal, April 2009

  • Klein, Stephen A.; McCoy, Renata B.; Morrison, Hugh
  • Quarterly Journal of the Royal Meteorological Society, Vol. 135, Issue 641
  • DOI: 10.1002/qj.416

A Focus On Mixed-Phase Clouds: The Status of Ground-Based Observational Methods
journal, October 2008

  • Shupe, Matthew D.; Daniel, John S.; de Boer, Gijs
  • Bulletin of the American Meteorological Society, Vol. 89, Issue 10
  • DOI: 10.1175/2008BAMS2378.1

Multimodel evaluation of cloud phase transition using satellite and reanalysis data
journal, August 2015

  • Cesana, G.; Waliser, D. E.; Jiang, X.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 15
  • DOI: 10.1002/2014JD022932

Droplet Concentration and Spectral Broadening in Southeast Pacific Stratocumulus Clouds
journal, March 2017

  • Snider, Jefferson R.; Leon, David; Wang, Zhien
  • Journal of the Atmospheric Sciences, Vol. 74, Issue 3
  • DOI: 10.1175/JAS-D-16-0043.1

Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations
journal, January 2011

  • Liu, Xiaohong; Xie, Shaocheng; Boyle, James
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JD015889

Development and Applications of ARM Millimeter-Wavelength Cloud Radars
journal, April 2016


Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS)
journal, January 2017

  • Loewe, Katharina; Ekman, Annica M. L.; Paukert, Marco
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 11
  • DOI: 10.5194/acp-17-6693-2017

Tropospheric clouds in Antarctica
journal, January 2012

  • Bromwich, David H.; Nicolas, Julien P.; Hines, Keith M.
  • Reviews of Geophysics, Vol. 50, Issue 1
  • DOI: 10.1029/2011RG000363

Ice Concentration Retrieval in Stratiform Mixed-Phase Clouds Using Cloud Radar Reflectivity Measurements and 1D Ice Growth Model Simulations
journal, October 2014

  • Zhang, Damao; Wang, Zhien; Heymsfield, Andrew
  • Journal of the Atmospheric Sciences, Vol. 71, Issue 10
  • DOI: 10.1175/JAS-D-13-0354.1

Toward More Accurate Retrievals of Ice Water Content from Radar Measurements of Clouds
journal, July 2000


Ice particle production in mid-level stratiform mixed-phase clouds observed with collocated A-Train measurements
journal, January 2018

  • Zhang, Damao; Wang, Zhien; Kollias, Pavlos
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 6
  • DOI: 10.5194/acp-18-4317-2018

Arctic Mixed-Phase Stratiform Cloud Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude Locations
journal, September 2009

  • de Boer, Gijs; Eloranta, Edwin W.; Shupe, Matthew D.
  • Journal of the Atmospheric Sciences, Vol. 66, Issue 9
  • DOI: 10.1175/2009JAS3029.1

Antarctic clouds, supercooled liquid water and mixed phase, investigated with DARDAR: geographical and seasonal variations
journal, January 2019

  • Listowski, Constantino; Delanoë, Julien; Kirchgaessner, Amélie
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 10
  • DOI: 10.5194/acp-19-6771-2019

High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE
journal, January 2018

  • Liu, Jun; Dedrick, Jeramy; Russell, Lynn M.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 12
  • DOI: 10.5194/acp-18-8571-2018

West Antarctic Ice Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites
journal, August 2017


Spaceborne lidar observations of the ice-nucleating potential of dust, polluted dust, and smoke aerosols in mixed-phase clouds
journal, June 2014

  • Tan, Ivy; Storelvmo, Trude; Choi, Yong-Sang
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 11
  • DOI: 10.1002/2013JD021333

January 2016 extensive summer melt in West Antarctica favoured by strong El Niño
journal, June 2017

  • Nicolas, Julien P.; Vogelmann, Andrew M.; Scott, Ryan C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15799

Fast Lidar and Radar Multiple-Scattering Models. Part I: Small-Angle Scattering Using the Photon Variance–Covariance Method
journal, December 2008


New Primary Ice-Nucleation Parameterizations in an Explicit Cloud Model
journal, July 1992


CCN measurements at the Princess Elisabeth Antarctica research station during three austral summers
journal, January 2019

  • Herenz, Paul; Wex, Heike; Mangold, Alexander
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 1
  • DOI: 10.5194/acp-19-275-2019