DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes

Abstract

Discovering electrode materials with exceptional capacitance, an indicator of the ability of a material to hold charge, is critical for developing capacitive deionization devices for water desalination. Maganese oxides (MnOx) have shown promise as capacitive electrode materials, but they exhibit a tradeoff where higher loading of the active MnOx comes at a cost of lower conductivity. To address this challenge and achieve high salt adsorption, we fabricated electrodes comprising vertically aligned core-shell nanostructures using atomic layer deposition (ALD) to coat thin films of MnOx onto vertically aligned carbon nanotubes (VACNTs). The inherently hierarchical, anisotropic, three-dimensional macroporous structure of VACNTs and the tunable coating, a hallmark of ALD, enabled co-optimization of the hybrid material’s specific capacitance with respect to mass and geometric area. The specific capacitance was optimized in this study to 215 ± 7 F/g and 1.1 ± 0.1 F/cm2 in 1 M NaCl electrolyte at 5 mV/s scan rate, respectively. This material exhibited remarkable sodium ion adsorption capacity of 489 ± 25 μmol Na /g material (two-fold higher than pristine VACNTs) at a functioning voltage of 1.2 V, which may ultimately enable expanded desalination applications of capacitive deionization.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Civil and Environmental Engineering, Massachusetts Institute of Technology; Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering
  2. Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering, and Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT)
  3. Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences Directorate
  5. Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering; New York Univ. (NYU), NY (United States). Dept. of Chemical and Biomolecular Engineering
  6. Yale Univ., New Haven, CT (United States). Dept. of Chemical and Environmental Engineering, and Energy Sciences Inst.
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1560981
Report Number(s):
LLNL-JRNL-755914
Journal ID: ISSN 2328-8930; 943204
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Environmental Science & Technology Letters (Online)
Additional Journal Information:
Journal Name: Environmental Science & Technology Letters (Online); Journal Volume: 5; Journal Issue: 11; Journal ID: ISSN 2328-8930
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Shi, Wenbo, Zhou, Xuechen, Li, Jinyang, Meshot, Eric R., Taylor, André D., Hu, Shu, Kim, Jae-Hong, Elimelech, Menachem, and Plata, Desiree L. High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. United States: N. p., 2018. Web. doi:10.1021/acs.estlett.8b00397.
Shi, Wenbo, Zhou, Xuechen, Li, Jinyang, Meshot, Eric R., Taylor, André D., Hu, Shu, Kim, Jae-Hong, Elimelech, Menachem, & Plata, Desiree L. High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. United States. https://doi.org/10.1021/acs.estlett.8b00397
Shi, Wenbo, Zhou, Xuechen, Li, Jinyang, Meshot, Eric R., Taylor, André D., Hu, Shu, Kim, Jae-Hong, Elimelech, Menachem, and Plata, Desiree L. Fri . "High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes". United States. https://doi.org/10.1021/acs.estlett.8b00397. https://www.osti.gov/servlets/purl/1560981.
@article{osti_1560981,
title = {High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes},
author = {Shi, Wenbo and Zhou, Xuechen and Li, Jinyang and Meshot, Eric R. and Taylor, André D. and Hu, Shu and Kim, Jae-Hong and Elimelech, Menachem and Plata, Desiree L.},
abstractNote = {Discovering electrode materials with exceptional capacitance, an indicator of the ability of a material to hold charge, is critical for developing capacitive deionization devices for water desalination. Maganese oxides (MnOx) have shown promise as capacitive electrode materials, but they exhibit a tradeoff where higher loading of the active MnOx comes at a cost of lower conductivity. To address this challenge and achieve high salt adsorption, we fabricated electrodes comprising vertically aligned core-shell nanostructures using atomic layer deposition (ALD) to coat thin films of MnOx onto vertically aligned carbon nanotubes (VACNTs). The inherently hierarchical, anisotropic, three-dimensional macroporous structure of VACNTs and the tunable coating, a hallmark of ALD, enabled co-optimization of the hybrid material’s specific capacitance with respect to mass and geometric area. The specific capacitance was optimized in this study to 215 ± 7 F/g and 1.1 ± 0.1 F/cm2 in 1 M NaCl electrolyte at 5 mV/s scan rate, respectively. This material exhibited remarkable sodium ion adsorption capacity of 489 ± 25 μmol Na /g material (two-fold higher than pristine VACNTs) at a functioning voltage of 1.2 V, which may ultimately enable expanded desalination applications of capacitive deionization.},
doi = {10.1021/acs.estlett.8b00397},
journal = {Environmental Science & Technology Letters (Online)},
number = 11,
volume = 5,
place = {United States},
year = {Fri Oct 05 00:00:00 EDT 2018},
month = {Fri Oct 05 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Vertically aligned coaxial CNT-MnOx hybrid synthesis and characterization. (a) Schematic illustration of MnOx coating strategy on VACNTs via ALD and proposed model of electrosorption of ions on the coated VACNTs. (b) Cross-sectional SEM image demonstrating the alignment of pristine VACNTs. (c) Increase in VACNT diameter after 150 ALDmore » cycles. (d, e) TEM images demonstrating the tunable MnOx coating via changing ALD cycle number at (d) 75 and (e) 150 cycles. (f) STEM image (high-angle annular dark-field imaging, HAADF) of VACNT-MnOx with 75 ALD cycles and (g) corresponding EDX elemental mapping confirming the presence of MnOx coating (Mn shown in blue and O shown in red).« less

Save / Share:

Works referenced in this record:

Desalination Freshens Up
journal, August 2006


Science and technology for water purification in the coming decades
journal, March 2008

  • Shannon, Mark A.; Bohn, Paul W.; Elimelech, Menachem
  • Nature, Vol. 452, Issue 7185, p. 301-310
  • DOI: 10.1038/nature06599

The Future of Seawater Desalination: Energy, Technology, and the Environment
journal, August 2011


Water desalination via capacitive deionization: what is it and what can we expect from it?
journal, January 2015

  • Suss, M. E.; Porada, S.; Sun, X.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE00519A

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Advanced Materials for Energy Storage
journal, February 2010


Materials for electrochemical capacitors
journal, November 2008

  • Simon, Patrice; Gogotsi, Yury
  • Nature Materials, Vol. 7, Issue 11
  • DOI: 10.1038/nmat2297

Carbon electrodes for capacitive deionization
journal, January 2017

  • Huang, Zheng-Hong; Yang, Zhiyu; Kang, Feiyu
  • Journal of Materials Chemistry A, Vol. 5, Issue 2
  • DOI: 10.1039/C6TA06733F

Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology
journal, August 2011


Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water
journal, August 2013


Porous MnO x Covered Electrospun Carbon Nanofiber for Capacitive Deionization
journal, January 2016

  • Cai, Wenshu; Xiong, Zhubiao; Hussain, Taimoor
  • Journal of The Electrochemical Society, Vol. 163, Issue 13
  • DOI: 10.1149/2.0141613jes

Electrodeposited Manganese Dioxide/Activated Carbon Composite As a High-Performance Electrode Material for Capacitive Deionization
journal, August 2016


Characterizing the Impacts of Deposition Techniques on the Performance of MnO 2 Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization
journal, September 2017

  • Hand, Steven; Cusick, Roland D.
  • Environmental Science & Technology, Vol. 51, Issue 20
  • DOI: 10.1021/acs.est.7b03060

Pseudocapacitive Coating for Effective Capacitive Deionization
journal, January 2018


Carbon Nanotube/Manganese Oxide Ultrathin Film Electrodes for Electrochemical Capacitors
journal, June 2010

  • Lee, Seung Woo; Kim, Junhyung; Chen, Shuo
  • ACS Nano, Vol. 4, Issue 7
  • DOI: 10.1021/nn100681d

Manganese oxide-based materials as electrochemical supercapacitor electrodes
journal, January 2011

  • Wei, Weifeng; Cui, Xinwei; Chen, Weixing
  • Chem. Soc. Rev., Vol. 40, Issue 3
  • DOI: 10.1039/C0CS00127A

Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces
journal, December 2015

  • Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang
  • Advanced Materials, Vol. 28, Issue 10
  • DOI: 10.1002/adma.201504504

Enhanced capacitive desalination of MnO 2 by forming composite with multi-walled carbon nanotubes
journal, January 2016

  • Chen, Bingwei; Wang, Yanfang; Chang, Zheng
  • RSC Advances, Vol. 6, Issue 8
  • DOI: 10.1039/C5RA26210K

Incorporating Manganese Dioxide in Carbon Nanotube–Chitosan as a Pseudocapacitive Composite Electrode for High-Performance Desalination
journal, December 2017


High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes
journal, April 2009


Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
journal, November 2006

  • Futaba, Don N.; Hata, Kenji; Yamada, Takeo
  • Nature Materials, Vol. 5, Issue 12
  • DOI: 10.1038/nmat1782

Optimization of MnO2/vertically aligned carbon nanotube composite for supercapacitor application
journal, July 2011


Diverse 3D Microarchitectures Made by Capillary Forming of Carbon Nanotubes
journal, September 2010

  • De Volder, Michael; Tawfick, Sameh H.; Park, Sei Jin
  • Advanced Materials, Vol. 22, Issue 39
  • DOI: 10.1002/adma.201001893

Precise control of elastocapillary densification of nanostructures via low-pressure condensation
journal, May 2014

  • Park, Sei Jin; Schmidt, Aaron J.; Tawfick, Sameh H.
  • Journal of Micromechanics and Microengineering, Vol. 24, Issue 6
  • DOI: 10.1088/0960-1317/24/6/065019

Stable Wettability Control of Nanoporous Microstructures by iCVD Coating of Carbon Nanotubes
journal, December 2017

  • Sojoudi, Hossein; Kim, Sanha; Zhao, Hangbo
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 49
  • DOI: 10.1021/acsami.7b13713

Coaxial MnO 2 /Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries
journal, March 2009

  • Reddy, Arava Leela Mohana; Shaijumon, Manikoth M.; Gowda, Sanketh R.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl803081j

Atomic Layer Deposition: An Overview
journal, January 2010

  • George, Steven M.
  • Chemical Reviews, Vol. 110, Issue 1, p. 111-131
  • DOI: 10.1021/cr900056b

Tailoring nanoporous materials by atomic layer deposition
journal, January 2011

  • Detavernier, Christophe; Dendooven, Jolien; Pulinthanathu Sree, Sreeprasanth
  • Chemical Society Reviews, Vol. 40, Issue 11
  • DOI: 10.1039/c1cs15091j

Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications
journal, January 2012

  • Marichy, Catherine; Bechelany, Mikhael; Pinna, Nicola
  • Advanced Materials, Vol. 24, Issue 8, p. 1017-1032
  • DOI: 10.1002/adma.201104129

Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology
journal, January 2017

  • Meng, Xiangbo; Wang, Xinwei; Geng, Dongsheng
  • Materials Horizons, Vol. 4, Issue 2
  • DOI: 10.1039/C6MH00521G

Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO 2 Nanoparticle Formation through Atomic Layer Deposition
journal, June 2016

  • Acauan, Luiz; Dias, Anna C.; Pereira, Marcelo B.
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 25
  • DOI: 10.1021/acsami.6b04001

Atomic Layer Deposition of Titanium Oxide for Pseudocapacitive Functionalization of Vertically-Aligned Carbon Nanotube Supercapacitor Electrodes
journal, November 2014

  • Fisher, Robert A.; Watt, Morgan R.; Konjeti, Ravi
  • ECS Journal of Solid State Science and Technology, Vol. 4, Issue 2
  • DOI: 10.1149/2.0141502jss

Atomic Layer Deposition of Silica on Carbon Nanotubes
journal, May 2017


Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs
journal, July 2016


Liquid Imbibition in Ceramic-Coated Carbon Nanotube Films
journal, November 2016


Conformal Atomic Layer Deposition of Alumina on Millimeter Tall, Vertically-Aligned Carbon Nanotube Arrays
journal, October 2014

  • Stano, Kelly L.; Carroll, Murphy; Padbury, Richard
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 21
  • DOI: 10.1021/am505107s

Scaling the Stiffness, Strength, and Toughness of Ceramic-Coated Nanotube Foams into the Structural Regime
journal, July 2014

  • Brieland-Shoultz, Anna; Tawfick, Sameh; Park, Sei Jin
  • Advanced Functional Materials, Vol. 24, Issue 36
  • DOI: 10.1002/adfm.201400851

Coating of Vertically Aligned Carbon Nanotubes by a Novel Manganese Oxide Atomic Layer Deposition Process for Binder-Free Hybrid Capacitors
journal, August 2016

  • Silva, Ricardo M.; Clavel, Guylhaine; Fan, Yafei
  • Advanced Materials Interfaces, Vol. 3, Issue 21
  • DOI: 10.1002/admi.201600313

Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes
journal, January 2017

  • Shi, Wenbo; Li, Jinjing; Polsen, Erik S.
  • Nanoscale, Vol. 9, Issue 16
  • DOI: 10.1039/C6NR09802A

The carbon nanotube formation parameter space: data mining and mechanistic understanding for efficient resource use
journal, January 2017

  • Shi, Wenbo; Xue, Ke; Meshot, Eric R.
  • Green Chemistry, Vol. 19, Issue 16
  • DOI: 10.1039/C7GC01421J

Rapid Growth and Flow-Mediated Nucleation of Millimeter-Scale Aligned Carbon Nanotube Structures from a Thin-Film Catalyst
journal, April 2006

  • Hart, Anastasios John; Slocum, Alexander H.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 16
  • DOI: 10.1021/jp055498b

Stable Water Oxidation in Acid Using Manganese-Modified TiO 2 Protective Coatings
journal, April 2018

  • Siddiqi, Georges; Luo, Zhenya; Xie, Yujun
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 22
  • DOI: 10.1021/acsami.8b05323

Flexible Micro-Supercapacitor Based on Graphene with 3D Structure
journal, January 2017


Ultrathin Planar Graphene Supercapacitors
journal, April 2011

  • Yoo, Jung Joon; Balakrishnan, Kaushik; Huang, Jingsong
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl200225j

Microsupercapacitors as miniaturized energy-storage components for on-chip electronics
journal, November 2016

  • Kyeremateng, Nana Amponsah; Brousse, Thierry; Pech, David
  • Nature Nanotechnology, Vol. 12, Issue 1
  • DOI: 10.1038/nnano.2016.196

Desalination via a new membrane capacitive deionization process utilizing flow-electrodes
journal, January 2013

  • Jeon, Sung-il; Park, Hong-ran; Yeo, Jeong-gu
  • Energy & Environmental Science, Vol. 6, Issue 5
  • DOI: 10.1039/c3ee24443a

Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation
journal, January 2014

  • Porada, S.; Weingarth, D.; Hamelers, H. V. M.
  • Journal of Materials Chemistry A, Vol. 2, Issue 24
  • DOI: 10.1039/c4ta01783h

Assessment of Microbial Fuel Cell Configurations and Power Densities
journal, July 2015

  • Logan, Bruce E.; Wallack, Maxwell J.; Kim, Kyoung-Yeol
  • Environmental Science & Technology Letters, Vol. 2, Issue 8
  • DOI: 10.1021/acs.estlett.5b00180

Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications
journal, March 2008


Sodium Charge Storage in Thin Films of MnO 2 Derived by Electrochemical Oxidation of MnO Atomic Layer Deposition Films
journal, January 2015

  • Young, Matthias J.; Neuber, Markus; Cavanagh, Andrew C.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0671514jes

Three dimensional manganese oxide on carbon nanotube hydrogels for asymmetric supercapacitors
journal, January 2016

  • Cheng, Hanlin; Duong, Hai M.; Jewell, Daniel
  • RSC Advances, Vol. 6, Issue 43
  • DOI: 10.1039/C6RA02858F

Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review
journal, January 2018


Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes
journal, January 2011

  • Wang, Lei; Wang, Ming; Huang, Zheng-Hong
  • Journal of Materials Chemistry, Vol. 21, Issue 45
  • DOI: 10.1039/c1jm13105b

Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes
journal, December 2007


NaCl adsorption in multi-walled carbon nanotubes
journal, July 2005


Porous carbon derived from Metal–organic framework (MOF) for capacitive deionization electrode
journal, September 2015


In Situ Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization
journal, April 2017

  • Wang, Zhuo; Yan, Tingting; Shi, Liyi
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 17
  • DOI: 10.1021/acsami.7b02712

Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization
journal, January 2015

  • Liu, Yong; Xu, Xingtao; Wang, Miao
  • Chemical Communications, Vol. 51, Issue 60
  • DOI: 10.1039/C5CC03999A

Nitrogen-doped porous carbon derived from a bimetallic metal–organic framework as highly efficient electrodes for flow-through deionization capacitors
journal, January 2016

  • Wang, Zhuo; Yan, Tingting; Fang, Jianhui
  • Journal of Materials Chemistry A, Vol. 4, Issue 28
  • DOI: 10.1039/C6TA02420C

High Salt Removal Capacity of Metal–Organic Gel Derived Porous Carbon for Capacitive Deionization
journal, November 2017


Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes
journal, February 2012

  • Porada, S.; Weinstein, L.; Dash, R.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 3
  • DOI: 10.1021/am201683j

Macropore- and Micropore-Dominated Carbon Derived from Poly(vinyl alcohol) and Polyvinylpyrrolidone for Supercapacitor and Capacitive Deionization
journal, November 2017


Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications
journal, August 2017

  • Chang, Yingna; Zhang, Guoxin; Han, Biao
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 35
  • DOI: 10.1021/acsami.7b08181

Hierarchically Porous Carbon Derived from PolyHIPE for Supercapacitor and Deionization Applications
journal, November 2017


Flexible 3D Nanoporous Graphene for Desalination and Bio-decontamination of Brackish Water via Asymmetric Capacitive Deionization
journal, September 2016

  • El-Deen, Ahmed G.; Boom, Remko M.; Kim, Hak Yong
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 38
  • DOI: 10.1021/acsami.6b08658

Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization
journal, January 2016

  • Liu, Peiying; Wang, Hui; Yan, Tingting
  • Journal of Materials Chemistry A, Vol. 4, Issue 14
  • DOI: 10.1039/C5TA10680J

A facile strategy for the fast construction of porous graphene frameworks and their enhanced electrosorption performance
journal, January 2017

  • Duan, Haiyan; Yan, Tingting; Chen, Guorong
  • Chemical Communications, Vol. 53, Issue 54
  • DOI: 10.1039/C7CC03424E

Facile synthesis of novel graphene sponge for high performance capacitive deionization
journal, February 2015

  • Xu, Xingtao; Pan, Likun; Liu, Yong
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08458

Titanium Disulfide: A Promising Low-Dimensional Electrode Material for Sodium Ion Intercalation for Seawater Desalination
journal, November 2017


Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few-layered molybdenum disulfide
journal, January 2017

  • Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon
  • Journal of Materials Chemistry A, Vol. 5, Issue 30
  • DOI: 10.1039/C7TA03120C

Chemically exfoliated MoS 2 for capacitive deionization of saline water
journal, January 2017


Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques
journal, January 2014

  • Lee, Jaehan; Kim, Seoni; Kim, Choonsoo
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE02378A

Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization
journal, June 2016


Ultrahigh performance of a novel electrochemical deionization system based on a NaTi 2 (PO 4 ) 3 /rGO nanocomposite
journal, January 2017

  • Huang, Yinxi; Chen, Fuming; Guo, Lu
  • Journal of Materials Chemistry A, Vol. 5, Issue 34
  • DOI: 10.1039/C7TA03725B

Charge Storage Mechanism of MnO 2 Electrode Used in Aqueous Electrochemical Capacitor
journal, August 2004

  • Toupin, Mathieu; Brousse, Thierry; Bélanger, Daniel
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm049649j

Different Crystallographic One-dimensional MnO 2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation
journal, May 2013

  • Saputra, Edy; Muhammad, Syaifullah; Sun, Hongqi
  • Environmental Science & Technology, Vol. 47, Issue 11
  • DOI: 10.1021/es400878c

Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system
journal, April 2015


Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant
journal, January 2018

  • Kim, Seoni; Kim, Jiye; Kim, Seonghwan
  • Environmental Science: Water Research & Technology, Vol. 4, Issue 2
  • DOI: 10.1039/C7EW00454K

Works referencing / citing this record:

Enhancing the capacitive deionization performance of NaMnO 2 by interface engineering and redox-reaction
journal, January 2019

  • Wang, Shiyong; Wang, Gang; Che, Xiaoping
  • Environmental Science: Nano, Vol. 6, Issue 8
  • DOI: 10.1039/c9en00545e

Study on boron and nitrogen co-doped graphene xerogel for high-performance electrosorption application
journal, July 2019

  • Wang, Shuangshuang; Feng, Jianwei; Meng, Qinghan
  • Journal of Solid State Electrochemistry, Vol. 23, Issue 8
  • DOI: 10.1007/s10008-019-04336-z

Carbon–metal compound composite electrodes for capacitive deionization: synthesis, development and applications
journal, January 2019

  • Tang, Kexin; Hong, Terence Zhi Xiang; You, Liming
  • Journal of Materials Chemistry A, Vol. 7, Issue 47
  • DOI: 10.1039/c9ta08663c

Rapid Inversion of Surface Charges in Heteroatom‐Doped Porous Carbon: A Route to Robust Electrochemical Desalination
journal, December 2019

  • Kang, Jin Soo; Kim, Seoni; Chung, Dong Young
  • Advanced Functional Materials, Vol. 30, Issue 9
  • DOI: 10.1002/adfm.201909387

Engineering Carbon Nanotube Forest Superstructure for Robust Thermal Desalination Membranes
journal, June 2019

  • Sun, Meng; Boo, Chanhee; Shi, Wenbo
  • Advanced Functional Materials, Vol. 29, Issue 36
  • DOI: 10.1002/adfm.201903125

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.