skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 17, 2020

Title: Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area

Abstract

Using renewable electricity to convert CO/CO 2 into liquid products is touted as a sustainable process to produce fuels and chemicals, yet requires further advances in electrocatalyst understanding, development and device integration. The roughness factor of an electrode has generally been used to increase total rates of production, although rarely as a means to improve selectivity. In this study, we demonstrate that increasing the roughness factor of Cu electrodes is an effective design principle to direct the selectivity of CO reduction towards multicarbon oxygenates at low overpotentials and concurrently suppressing hydrocarbon and hydrogen production. The nanostructured Cu electrodes are capable of achieving almost full selectivity towards multicarbon oxygenates at an electrode potential of only –0.23 V versus the reversible hydrogen electrode. Lastly, the successful implementation of this catalytic system has enabled an excellent CO reduction performance and elucidated viable pathways to improve the energy efficiency towards liquid fuels in high-power conversion electrolysers.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [4]
  1. Stanford Univ., CA (United States)
  2. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); McMaster Univ., Hamilton, ON (Canada)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1560654
Grant/Contract Number:  
[AC02-76SF00515; SC0004993]
Resource Type:
Accepted Manuscript
Journal Name:
Nature Catalysis
Additional Journal Information:
[ Journal Volume: 2; Journal Issue: 8]; Journal ID: ISSN 2520-1158
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 30 DIRECT ENERGY CONVERSION

Citation Formats

Wang, Lei, Nitopi, Stephanie, Wong, Andrew B., Snider, Jonathan L., Nielander, Adam C., Morales-Guio, Carlos G., Orazov, Marat, Higgins, Drew C., Hahn, Christopher, and Jaramillo, Thomas F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. United States: N. p., 2019. Web. doi:10.1038/s41929-019-0301-z.
Wang, Lei, Nitopi, Stephanie, Wong, Andrew B., Snider, Jonathan L., Nielander, Adam C., Morales-Guio, Carlos G., Orazov, Marat, Higgins, Drew C., Hahn, Christopher, & Jaramillo, Thomas F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. United States. doi:10.1038/s41929-019-0301-z.
Wang, Lei, Nitopi, Stephanie, Wong, Andrew B., Snider, Jonathan L., Nielander, Adam C., Morales-Guio, Carlos G., Orazov, Marat, Higgins, Drew C., Hahn, Christopher, and Jaramillo, Thomas F. Mon . "Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area". United States. doi:10.1038/s41929-019-0301-z.
@article{osti_1560654,
title = {Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area},
author = {Wang, Lei and Nitopi, Stephanie and Wong, Andrew B. and Snider, Jonathan L. and Nielander, Adam C. and Morales-Guio, Carlos G. and Orazov, Marat and Higgins, Drew C. and Hahn, Christopher and Jaramillo, Thomas F.},
abstractNote = {Using renewable electricity to convert CO/CO2 into liquid products is touted as a sustainable process to produce fuels and chemicals, yet requires further advances in electrocatalyst understanding, development and device integration. The roughness factor of an electrode has generally been used to increase total rates of production, although rarely as a means to improve selectivity. In this study, we demonstrate that increasing the roughness factor of Cu electrodes is an effective design principle to direct the selectivity of CO reduction towards multicarbon oxygenates at low overpotentials and concurrently suppressing hydrocarbon and hydrogen production. The nanostructured Cu electrodes are capable of achieving almost full selectivity towards multicarbon oxygenates at an electrode potential of only –0.23 V versus the reversible hydrogen electrode. Lastly, the successful implementation of this catalytic system has enabled an excellent CO reduction performance and elucidated viable pathways to improve the energy efficiency towards liquid fuels in high-power conversion electrolysers.},
doi = {10.1038/s41929-019-0301-z},
journal = {Nature Catalysis},
number = [8],
volume = [2],
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 17, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theoretical Considerations on the Electroreduction of CO to C 2 Species on Cu(100) Electrodes
journal, June 2013

  • Calle-Vallejo, Federico; Koper, Marc T. M.
  • Angewandte Chemie International Edition, Vol. 52, Issue 28
  • DOI: 10.1002/anie.201301470

Single-Crystalline Scroll-Type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature
journal, May 2003


Mesostructure-Induced Selectivity in CO 2 Reduction Catalysis
journal, November 2015

  • Hall, Anthony Shoji; Yoon, Youngmin; Wuttig, Anna
  • Journal of the American Chemical Society, Vol. 137, Issue 47
  • DOI: 10.1021/jacs.5b08259

A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
journal, August 2006


Self-assembled structures of CuO primary crystals synthesized from Cu(CH3COO)2–NaOH aqueous systems
journal, January 2012

  • Xu, Xiaoxue; Yang, Hong; Liu, Yinong
  • CrystEngComm, Vol. 14, Issue 16
  • DOI: 10.1039/c2ce25420d

CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications
journal, March 2014


Efficient solar-driven electrochemical CO 2 reduction to hydrocarbons and oxygenates
journal, January 2017

  • Gurudayal, Gurudayal; Bullock, James; Srankó, Dávid F.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01764B

Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
journal, March 2017

  • Ledezma-Yanez, Isis; Wallace, W. David Z.; Sebastián-Pascual, Paula
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.31

Controlled Reactions on a Copper Surface:  Synthesis and Characterization of Nanostructured Copper Compound Films
journal, August 2003

  • Zhang, Weixin; Wen, Xiaogang; Yang, Shihe
  • Inorganic Chemistry, Vol. 42, Issue 16
  • DOI: 10.1021/ic0344214

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Electrochemical Reduction of CO at a Copper Electrode
journal, September 1997

  • Hori, Yoshio; Takahashi, Ryutaro; Yoshinami, Yuzuru
  • The Journal of Physical Chemistry B, Vol. 101, Issue 36
  • DOI: 10.1021/jp970284i

Two Pathways for the Formation of Ethylene in CO Reduction on Single-Crystal Copper Electrodes
journal, June 2012

  • Schouten, Klaas Jan P.; Qin, Zisheng; Pérez Gallent, Elena
  • Journal of the American Chemical Society, Vol. 134, Issue 24
  • DOI: 10.1021/ja302668n

Engineering Cu surfaces for the electrocatalytic conversion of CO 2 : Controlling selectivity toward oxygenates and hydrocarbons
journal, May 2017

  • Hahn, Christopher; Hatsukade, Toru; Kim, Youn-Geun
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 23
  • DOI: 10.1073/pnas.1618935114

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction
journal, March 2018


Particle Size Effects in the Catalytic Electroreduction of CO 2 on Cu Nanoparticles
journal, May 2014

  • Reske, Rulle; Mistry, Hemma; Behafarid, Farzad
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja500328k

Reduction of carbon dioxide to methane and ethene—an on-line MS study with rotating electrodes
journal, April 1990


Surface reconstruction of pure-Cu single-crystal electrodes under CO-reduction potentials in alkaline solutions: A study by seriatim ECSTM-DEMS
journal, November 2016


The Evolution of the Polycrystalline Copper Surface, First to Cu(111) and Then to Cu(100), at a Fixed CO 2 RR Potential: A Study by Operando EC-STM
journal, December 2014

  • Kim, Youn-Geun; Baricuatro, Jack Hess; Javier, Alnald
  • Langmuir, Vol. 30, Issue 50
  • DOI: 10.1021/la504445g

Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas
journal, April 2007


Tuning of Silver Catalyst Mesostructure Promotes Selective Carbon Dioxide Conversion into Fuels
journal, November 2016

  • Yoon, Youngmin; Hall, Anthony Shoji; Surendranath, Yogesh
  • Angewandte Chemie International Edition, Vol. 55, Issue 49
  • DOI: 10.1002/anie.201607942

CO 2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface
journal, May 2018


Mechanistic Studies of Formate Oxidation on Platinum in Alkaline Medium
journal, February 2012

  • John, Jimmy; Wang, Hongsen; Rus, Eric D.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 9
  • DOI: 10.1021/jp211887x

Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO 2 over Cu Nanowire Arrays
journal, April 2016

  • Ma, Ming; Djanashvili, Kristina; Smith, Wilson A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601282

Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration
journal, August 2016


Catalysis of the electrochemical reduction of carbon dioxide
journal, January 2013

  • Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel
  • Chem. Soc. Rev., Vol. 42, Issue 6
  • DOI: 10.1039/C2CS35360A

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

PRODUCTION OF CO AND CH 4 IN ELECTROCHEMICAL REDUCTION OF CO 2 AT METAL ELECTRODES IN AQUEOUS HYDROGENCARBONATE SOLUTION
journal, November 1985

  • Hori, Yoshio; Kikuchi, Katsuhei; Suzuki, Shin
  • Chemistry Letters, Vol. 14, Issue 11
  • DOI: 10.1246/cl.1985.1695

Nickel–Gallium-Catalyzed Electrochemical Reduction of CO 2 to Highly Reduced Products at Low Overpotentials
journal, February 2016

  • Torelli, Daniel A.; Francis, Sonja A.; Crompton, J. Chance
  • ACS Catalysis, Vol. 6, Issue 3
  • DOI: 10.1021/acscatal.5b02888

Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO 2 reduction
journal, January 2015

  • Hahn, Christopher; Abram, David N.; Hansen, Heine A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 40
  • DOI: 10.1039/C5TA04863J

Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide
journal, August 2017

  • Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra
  • Journal of the American Chemical Society, Vol. 139, Issue 32
  • DOI: 10.1021/jacs.7b06765

Low-Overpotential Electroreduction of Carbon Monoxide Using Copper Nanowires
journal, June 2017


“Deactivation of copper electrode” in electrochemical reduction of CO2
journal, September 2005


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Technical photosynthesis involving CO2 electrolysis and fermentation
journal, January 2018


Understanding trends in electrochemical carbon dioxide reduction rates
journal, May 2017

  • Liu, Xinyan; Xiao, Jianping; Peng, Hongjie
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15438

Electroreduction of Carbon Monoxide Over a Copper Nanocube Catalyst: Surface Structure and pH Dependence on Selectivity
journal, February 2016

  • Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders
  • ChemCatChem, Vol. 8, Issue 6
  • DOI: 10.1002/cctc.201501189

Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction
journal, August 2018


A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
journal, January 2011

  • Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.
  • Chemical Science, Vol. 2, Issue 10
  • DOI: 10.1039/c1sc00277e

Copper Hydroxide Nanoneedle and Nanotube Arrays Fabricated by Anodization of Copper
journal, December 2005

  • Wu, Xufeng; Bai, Hua; Zhang, Jiaxin
  • The Journal of Physical Chemistry B, Vol. 109, Issue 48
  • DOI: 10.1021/jp054350p

Theoretical Investigations of Transition Metal Surface Energies under Lattice Strain and CO Environment
journal, May 2018

  • Tang, Michael T.; Ulissi, Zachary W.; Chan, Karen
  • The Journal of Physical Chemistry C, Vol. 122, Issue 26
  • DOI: 10.1021/acs.jpcc.8b02094

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
journal, September 2015

  • Kortlever, Ruud; Shen, Jing; Schouten, Klaas Jan P.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 20
  • DOI: 10.1021/acs.jpclett.5b01559

NMR Spectroscopic Evidence for an Intermediate of Formic Acid in the Water−Gas−Shift Reaction
journal, September 2004

  • Yoshida, Ken; Wakai, Chihiro; Matubayasi, Nobuyuki
  • The Journal of Physical Chemistry A, Vol. 108, Issue 37
  • DOI: 10.1021/jp047086t

A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles
journal, March 2016


One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer
journal, January 2016