skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation

Abstract

Metal–oxo moieties are important catalytic intermediates in the selective partial oxidation of hydrocarbons and in water splitting. Stable metal–oxo species have reactive properties that vary depending on the spin state of the metal, complicating the development of structure–property relationships. To overcome these challenges, we train machine-learning (ML) models capable of predicting metal–oxo formation energies across a range of first-row metals, oxidation states, and spin states. Using connectivity-only features tailored for inorganic chemistry as inputs to kernel ridge regression or artificial neural network (ANN) ML models, we achieve good mean absolute errors (4–5 kcal/mol) on set-aside test data across a range of ligand orientations. Analysis of feature importance for oxo formation energy prediction reveals the dominance of nonlocal, electronic ligand properties in contrast to other transition metal complex properties (e.g., spin-state or ionization potential). We enumerate the theoretical catalyst space with an ANN, revealing expected trends in oxo formation energetics, such as destabilization of the metal–oxo species with increasing d-filling, as well as exceptions, such as weak correlations with indicators of oxidative stability of the metal in the resting state or unexpected spin-state dependence in reactivity. We carry out uncertainty-aware evolutionary optimization using the ANN to explore a >37 000 candidatemore » catalyst space. New metal and oxidation state combinations are uncovered and validated with density functional theory (DFT), including counterintuitive oxo formation energies for oxidatively stable complexes. This approach doubles the density of confirmed DFT leads in originally sparsely populated regions of property space, highlighting the potential of ML-model-driven discovery to uncover catalyst design rules and exceptions.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1];  [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Clemson Univ., Clemson, SC (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1560618
Grant/Contract Number:  
SC0012702
Resource Type:
Accepted Manuscript
Journal Name:
ACS Catalysis
Additional Journal Information:
Journal Volume: 9; Journal Issue: 9; Journal ID: ISSN 2155-5435
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; metal−oxo species; machine learning; density functional theory; spin-state-dependent reactivity; transition metal catalysis; artificial neural networks

Citation Formats

Nandy, Aditya, Zhu, Jiazhou, Janet, Jon Paul, Duan, Chenru, Getman, Rachel B., and Kulik, Heather J.. Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. United States: N. p., 2019. Web. https://doi.org/10.1021/acscatal.9b02165.
Nandy, Aditya, Zhu, Jiazhou, Janet, Jon Paul, Duan, Chenru, Getman, Rachel B., & Kulik, Heather J.. Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation. United States. https://doi.org/10.1021/acscatal.9b02165
Nandy, Aditya, Zhu, Jiazhou, Janet, Jon Paul, Duan, Chenru, Getman, Rachel B., and Kulik, Heather J.. Tue . "Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation". United States. https://doi.org/10.1021/acscatal.9b02165. https://www.osti.gov/servlets/purl/1560618.
@article{osti_1560618,
title = {Machine Learning Accelerates the Discovery of Design Rules and Exceptions in Stable Metal–Oxo Intermediate Formation},
author = {Nandy, Aditya and Zhu, Jiazhou and Janet, Jon Paul and Duan, Chenru and Getman, Rachel B. and Kulik, Heather J.},
abstractNote = {Metal–oxo moieties are important catalytic intermediates in the selective partial oxidation of hydrocarbons and in water splitting. Stable metal–oxo species have reactive properties that vary depending on the spin state of the metal, complicating the development of structure–property relationships. To overcome these challenges, we train machine-learning (ML) models capable of predicting metal–oxo formation energies across a range of first-row metals, oxidation states, and spin states. Using connectivity-only features tailored for inorganic chemistry as inputs to kernel ridge regression or artificial neural network (ANN) ML models, we achieve good mean absolute errors (4–5 kcal/mol) on set-aside test data across a range of ligand orientations. Analysis of feature importance for oxo formation energy prediction reveals the dominance of nonlocal, electronic ligand properties in contrast to other transition metal complex properties (e.g., spin-state or ionization potential). We enumerate the theoretical catalyst space with an ANN, revealing expected trends in oxo formation energetics, such as destabilization of the metal–oxo species with increasing d-filling, as well as exceptions, such as weak correlations with indicators of oxidative stability of the metal in the resting state or unexpected spin-state dependence in reactivity. We carry out uncertainty-aware evolutionary optimization using the ANN to explore a >37 000 candidate catalyst space. New metal and oxidation state combinations are uncovered and validated with density functional theory (DFT), including counterintuitive oxo formation energies for oxidatively stable complexes. This approach doubles the density of confirmed DFT leads in originally sparsely populated regions of property space, highlighting the potential of ML-model-driven discovery to uncover catalyst design rules and exceptions.},
doi = {10.1021/acscatal.9b02165},
journal = {ACS Catalysis},
number = 9,
volume = 9,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Representative structures for the equatorially symmetric (top) and equatorially asymmetric (bottom) data sets, which each have up to two unique ligand types, L1 and L2 (here L1 = CN, L2 = NH3). The metal is shown as an orange sphere, and other atoms are shown as sticks, withmore » oxygen in red, nitrogen in blue, and carbon in gray.« less

Save / Share:

Works referenced in this record:

Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century
journal, December 2000


Beyond Oil and Gas: The Methanol Economy
journal, April 2005


Platinum Catalysts for the High-Yield Oxidation of Methane to a Methanol Derivative
journal, April 1998


New Catalyst Systems for the Catalytic Conversion of Methane into Methanol
journal, May 2002


Selective Oxidation of Methane to Methanol Catalyzed, with CH Activation, by Homogeneous, Cationic Gold
journal, September 2004

  • Jones, Cj; Taube, Doug; Ziatdinov, Vadim R.
  • Angewandte Chemie, Vol. 116, Issue 35
  • DOI: 10.1002/ange.200461055

Solid Catalysts for the Selective Low-Temperature Oxidation of Methane to Methanol
journal, September 2009

  • Palkovits, Regina; Antonietti, Markus; Kuhn, Pierre
  • Angewandte Chemie International Edition, Vol. 48, Issue 37
  • DOI: 10.1002/anie.200902009

Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5
journal, April 2012

  • Hammond, Ceri; Forde, Michael M.; Ab Rahim, Mohd Hasbi
  • Angewandte Chemie International Edition, Vol. 51, Issue 21
  • DOI: 10.1002/anie.201108706

Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature
journal, April 2016


Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics
journal, February 2017


Characterization of α-Ketoglutarate-dependent Taurine Dioxygenase from Escherichia coli
journal, September 1997

  • Eichhorn, Eric; van der Ploeg, Jan R.; Kertesz, Michael A.
  • Journal of Biological Chemistry, Vol. 272, Issue 37
  • DOI: 10.1074/jbc.272.37.23031

Evidence for Hydrogen Abstraction from C1 of Taurine by the High-Spin Fe(IV) Intermediate Detected during Oxygen Activation by Taurine:α-Ketoglutarate Dioxygenase (TauD)
journal, October 2003

  • Price, John C.; Barr, Eric W.; Glass, Timothy E.
  • Journal of the American Chemical Society, Vol. 125, Issue 43
  • DOI: 10.1021/ja037400h

Biologically inspired oxidation catalysis
journal, September 2008


Tuning Reactivity and Mechanism in Oxidation Reactions by Mononuclear Nonheme Iron(IV)-Oxo Complexes
journal, February 2014

  • Nam, Wonwoo; Lee, Yong-Min; Fukuzumi, Shunichi
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400258p

Synthetic Mononuclear Nonheme Iron–Oxygen Intermediates
journal, July 2015


Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes
journal, June 2016

  • Engelmann, Xenia; Monte-Pérez, Inés; Ray, Kallol
  • Angewandte Chemie International Edition, Vol. 55, Issue 27
  • DOI: 10.1002/anie.201600507

Dioxygen Activation and Catalytic Aerobic Oxidation by a Mononuclear Nonheme Iron(II) Complex
journal, March 2005

  • Kim, Sun Ok; Sastri, Chivukula V.; Seo, Mi Sook
  • Journal of the American Chemical Society, Vol. 127, Issue 12
  • DOI: 10.1021/ja043083i

Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol
journal, June 2015

  • Grundner, Sebastian; Markovits, Monica A. C.; Li, Guanna
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8546

Structural characterization of a non-heme iron active site in zeolites that hydroxylates methane
journal, April 2018

  • Snyder, Benjamin E. R.; Böttger, Lars H.; Bols, Max L.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 18
  • DOI: 10.1073/pnas.1721717115

Isolated Fe Sites in Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol
journal, May 2018

  • Osadchii, Dmitrii Y.; Olivos-Suarez, Alma I.; Szécsényi, Ágnes
  • ACS Catalysis, Vol. 8, Issue 6
  • DOI: 10.1021/acscatal.8b00505

Role of metal–oxo complexes in the cleavage of C–H bonds
journal, January 2011


Incorporation of redox-inactive cations promotes iron catalyzed aerobic C–H oxidation at mild potentials
journal, January 2018

  • Chantarojsiri, Teera; Ziller, Joseph W.; Yang, Jenny Y.
  • Chemical Science, Vol. 9, Issue 9
  • DOI: 10.1039/C7SC04486K

Chemical and Spectroscopic Evidence for an FeV-Oxo Complex
journal, February 2007


Stereospecific Alkane Hydroxylation by Non-Heme Iron Catalysts:  Mechanistic Evidence for an Fe V O Active Species
journal, July 2001

  • Chen, Kui; Que, Lawrence
  • Journal of the American Chemical Society, Vol. 123, Issue 26
  • DOI: 10.1021/ja010310x

Preparation and Properties of a Monomeric Mn IV −Oxo Complex
journal, July 2006

  • Parsell, Trenton H.; Behan, Rachel K.; Green, Michael T.
  • Journal of the American Chemical Society, Vol. 128, Issue 27
  • DOI: 10.1021/ja062332v

High-spin Mn–oxo complexes and their relevance to the oxygen-evolving complex within photosystem II
journal, April 2015

  • Gupta, Rupal; Taguchi, Taketo; Lassalle-Kaiser, Benedikt
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 17
  • DOI: 10.1073/pnas.1422800112

Oxygen-Atom Transfer Reactivity of Axially Ligated Mn(V)–Oxo Complexes: Evidence for Enhanced Electrophilic and Nucleophilic Pathways
journal, September 2014

  • Neu, Heather M.; Yang, Tzuhsiung; Baglia, Regina A.
  • Journal of the American Chemical Society, Vol. 136, Issue 39
  • DOI: 10.1021/ja507177h

Aqueous FeIVO: Spectroscopic Identification and Oxo-Group Exchange
journal, October 2005

  • Pestovsky, Oleg; Stoian, Sebastian; Bominaar, Emile L.
  • Angewandte Chemie International Edition, Vol. 44, Issue 42
  • DOI: 10.1002/anie.200502686

Structural Insights into Nonheme Alkylperoxoiron(III) and Oxoiron(IV) Intermediates by X-ray Absorption Spectroscopy
journal, December 2004

  • Rohde, Jan-Uwe; Torelli, Stéphane; Shan, Xiaopeng
  • Journal of the American Chemical Society, Vol. 126, Issue 51
  • DOI: 10.1021/ja047667w

High-valent nonheme iron-oxo complexes: Synthesis, structure, and spectroscopy
journal, January 2013


Electron Paramagnetic Resonance and Mössbauer Spectroscopy and Density Functional Theory Analysis of a High-Spin Fe IV –Oxo Complex
journal, May 2012

  • Gupta, Rupal; Lacy, David C.; Bominaar, Emile L.
  • Journal of the American Chemical Society, Vol. 134, Issue 23
  • DOI: 10.1021/ja303224p

Accelerated Computational Analysis of Metal–Organic Frameworks for Oxidation Catalysis
journal, August 2016

  • Vogiatzis, Konstantinos D.; Haldoupis, Emmanuel; Xiao, Dianne J.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcc.6b07115

Electronic Design Criteria for O−O Bond Formation via Metal−Oxo Complexes
journal, March 2008

  • Betley, Theodore A.; Wu, Qin; Van Voorhis, Troy
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701972n

cPCET versus HAT: A Direct Theoretical Method for Distinguishing X-H Bond-Activation Mechanisms
journal, August 2018


Analysis of Reaction Channels for Alkane Hydroxylation by Nonheme Iron(IV)-Oxo Complexes
journal, July 2010

  • Geng, Caiyun; Ye, Shengfa; Neese, Frank
  • Angewandte Chemie International Edition, Vol. 49, Issue 33
  • DOI: 10.1002/anie.201001850

Spin State Energetics and Oxyl Character of Mn-Oxo Porphyrins by Multiconfigurational ab Initio Calculations: Implications on Reactivity
journal, February 2016

  • Venturinelli Jannuzzi, Sergio Augusto; Phung, Quan Manh; Domingo, Alex
  • Inorganic Chemistry, Vol. 55, Issue 11
  • DOI: 10.1021/acs.inorgchem.5b02920

Why Is Cobalt the Best Transition Metal in Transition-Metal Hangman Corroles for O–O Bond Formation during Water Oxidation?
journal, August 2012

  • Lai, Wenzhen; Cao, Rui; Dong, Geng
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 17
  • DOI: 10.1021/jz3008535

Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butene
journal, August 2018


Trapping Iron(III)–Oxo Species at the Boundary of the “Oxo Wall”: Insights into the Nature of the Fe(III)–O Bond
journal, October 2018

  • Andris, Erik; Navrátil, Rafael; Jašík, Juraj
  • Journal of the American Chemical Society, Vol. 140, Issue 43
  • DOI: 10.1021/jacs.8b08950

Living with Oxygen
journal, July 2018


Revisiting the Polyoxometalate-Based Late-Transition-Metal-Oxo Complexes: The “Oxo Wall” Stands
journal, June 2012

  • O’Halloran, Kevin P.; Zhao, Chongchao; Ando, Nicole S.
  • Inorganic Chemistry, Vol. 51, Issue 13
  • DOI: 10.1021/ic2008914

Metal-centered oxygen atom transfer reactions
journal, December 1987


Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt–Oxygen Complex
journal, August 2018


Electrocatalytic water oxidation by a molecular cobalt complex through a high valent cobalt oxo intermediate
journal, January 2016

  • Das, Debasree; Pattanayak, Santanu; Singh, Kundan K.
  • Chemical Communications, Vol. 52, Issue 79
  • DOI: 10.1039/C6CC05773J

M−O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)-Oxyl and Cobalt(III)-Oxo Complexes
journal, June 2019

  • Andris, Erik; Navrátil, Rafael; Jašík, Juraj
  • Angewandte Chemie International Edition, Vol. 58, Issue 28
  • DOI: 10.1002/anie.201904546

Spectroscopic and Quantum Chemical Studies on Low-Spin Fe IV O Complexes:  Fe−O Bonding and Its Contributions to Reactivity
journal, December 2007

  • Decker, Andrea; Rohde, Jan-Uwe; Klinker, Eric J.
  • Journal of the American Chemical Society, Vol. 129, Issue 51
  • DOI: 10.1021/ja074900s

A ligand field chemistry of oxygen generation by the oxygen-evolving complex and synthetic active sites
journal, October 2007

  • Betley, Theodore A.; Surendranath, Yogesh; Childress, Montana V.
  • Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 363, Issue 1494
  • DOI: 10.1098/rstb.2007.2226

The Role of Equatorial and Axial Ligands in Promoting the Activity of Non-Heme Oxidoiron(IV) Catalysts in Alkane Hydroxylation
journal, July 2007

  • Bernasconi, Leonardo; Louwerse, Manuel J.; Baerends, Evert Jan
  • European Journal of Inorganic Chemistry, Vol. 2007, Issue 19
  • DOI: 10.1002/ejic.200601238

Two-State Reactivity in Alkane Hydroxylation by Non-Heme Iron−Oxo Complexes
journal, June 2006

  • Hirao, Hajime; Kumar, Devesh; Que, Lawrence
  • Journal of the American Chemical Society, Vol. 128, Issue 26
  • DOI: 10.1021/ja061609o

Reactivity of High-Valent Iron–Oxo Species in Enzymes and Synthetic Reagents: A Tale of Many States
journal, July 2007

  • Shaik, Sason; Hirao, Hajime; Kumar, Devesh
  • Accounts of Chemical Research, Vol. 40, Issue 7
  • DOI: 10.1021/ar600042c

Nonclassical Single-State Reactivity of an Oxo-Iron(IV) Complex Confined to Triplet Pathways
journal, June 2017

  • Kupper, Claudia; Mondal, Bhaskar; Serrano-Plana, Joan
  • Journal of the American Chemical Society, Vol. 139, Issue 26
  • DOI: 10.1021/jacs.7b03255

The Fundamental Role of Exchange-Enhanced Reactivity in CH Activation by S=2 Oxo Iron(IV) Complexes
journal, March 2010

  • Janardanan, Deepa; Wang, Yong; Schyman, Patric
  • Angewandte Chemie International Edition, Vol. 49, Issue 19
  • DOI: 10.1002/anie.201000004

Structures of Nonheme Oxoiron(IV) Complexes from X-ray Crystallography, NMR Spectroscopy, and DFT Calculations
journal, June 2005

  • Klinker, Eric J.; Kaizer, József; Brennessel, William W.
  • Angewandte Chemie International Edition, Vol. 44, Issue 24
  • DOI: 10.1002/anie.200500485

An FeIVO complex of a tetradentate tripodal nonheme ligand
journal, March 2003

  • Lim, M. H.; Rohde, J. -U.; Stubna, A.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 7
  • DOI: 10.1073/pnas.0636830100

Nonheme Fe IV O Complexes That Can Oxidize the C−H Bonds of Cyclohexane at Room Temperature
journal, January 2004

  • Kaizer, József; Klinker, Eric J.; Oh, Na Young
  • Journal of the American Chemical Society, Vol. 126, Issue 2
  • DOI: 10.1021/ja037288n

Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation
journal, March 2019

  • Rosen, Andrew S.; Notestein, Justin M.; Snurr, Randall Q.
  • ACS Catalysis, Vol. 9, Issue 4
  • DOI: 10.1021/acscatal.8b05178

Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation
journal, October 2016

  • Ortuño, Manuel A.; Bernales, Varinia; Gagliardi, Laura
  • The Journal of Physical Chemistry C, Vol. 120, Issue 43
  • DOI: 10.1021/acs.jpcc.6b06381

Computational Screening of Bimetal-Functionalized Zr 6 O 8 MOF Nodes for Methane C–H Bond Activation
journal, July 2017


In Silico Screening of Iron-Oxo Catalysts for CH Bond Cleavage
journal, March 2015

  • Andrikopoulos, Prokopis C.; Michel, Carine; Chouzier, Sandra
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/cs500996k

Ligands for Dinitrogen Fixation at Schrock-Type Catalysts
journal, February 2009

  • Schenk, Stephan; Reiher, Markus
  • Inorganic Chemistry, Vol. 48, Issue 4
  • DOI: 10.1021/ic802037w

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
journal, October 2006

  • Greeley, Jeff; Jaramillo, Thomas F.; Bonde, Jacob
  • Nature Materials, Vol. 5, Issue 11, p. 909-913
  • DOI: 10.1038/nmat1752

Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts
journal, April 2006


Towards the computational design of solid catalysts
journal, April 2009

  • Nørskov, J.; Bligaard, T.; Rossmeisl, J.
  • Nature Chemistry, Vol. 1, Issue 1, p. 37-46
  • DOI: 10.1038/nchem.121

When Is Ligand p K a a Good Descriptor for Catalyst Energetics? In Search of Optimal CO 2 Hydration Catalysts
journal, April 2018

  • Kim, Jeong Yun; Kulik, Heather J.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 18
  • DOI: 10.1021/acs.jpca.8b03301

Understanding and Breaking Scaling Relations in Single-Site Catalysis: Methane to Methanol Conversion by Fe IV ═O
journal, January 2018


Understanding trends in C–H bond activation in heterogeneous catalysis
journal, October 2016

  • Latimer, Allegra A.; Kulkarni, Ambarish R.; Aljama, Hassan
  • Nature Materials, Vol. 16, Issue 2
  • DOI: 10.1038/nmat4760

Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities
journal, October 2018

  • Vogiatzis, Konstantinos D.; Polynski, Mikhail V.; Kirkland, Justin K.
  • Chemical Reviews, Vol. 119, Issue 4
  • DOI: 10.1021/acs.chemrev.8b00361

Optimizing Open Iron Sites in Metal–Organic Frameworks for Ethane Oxidation: A First-Principles Study
journal, April 2017

  • Liao, Peilin; Getman, Rachel B.; Snurr, Randall Q.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 39
  • DOI: 10.1021/acsami.7b02195

Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces
journal, July 2007


Scaling relations between adsorption energies for computational screening and design of catalysts
journal, January 2014

  • Montemore, Matthew M.; Medlin, J. Will
  • Catal. Sci. Technol., Vol. 4, Issue 11
  • DOI: 10.1039/C4CY00335G

Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design
journal, June 2016


The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis
journal, May 2004


Reactivity Theory of Transition-Metal Surfaces: A Brønsted−Evans−Polanyi Linear Activation Energy−Free-Energy Analysis
journal, December 2009

  • van Santen, Rutger A.; Neurock, Matthew; Shetty, Sharan G.
  • Chemical Reviews, Vol. 110, Issue 4
  • DOI: 10.1021/cr9001808

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces
journal, March 2011

  • Man, Isabela C.; Su, Hai‐Yan; Calle‐Vallejo, Federico
  • ChemCatChem, Vol. 3, Issue 7
  • DOI: 10.1002/cctc.201000397

Activity Descriptors for CO 2 Electroreduction to Methane on Transition-Metal Catalysts
journal, January 2012

  • Peterson, Andrew A.; Nørskov, Jens K.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 2
  • DOI: 10.1021/jz201461p

Electronic factors determining the reactivity of metal surfaces
journal, December 1995


Why gold is the noblest of all the metals
journal, July 1995


Theoretical surface science and catalysis—calculations and concepts
book, January 2000


Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents
journal, December 2010

  • Shaik, Sason; Chen, Hui; Janardanan, Deepa
  • Nature Chemistry, Vol. 3, Issue 1
  • DOI: 10.1038/nchem.943

Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions
journal, January 2011

  • Calle-Vallejo, Federico; Martínez, José Ignacio; Rossmeisl, Jan
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 34
  • DOI: 10.1039/c1cp21228a

Computational Discovery of Hydrogen Bond Design Rules for Electrochemical Ion Separation
journal, August 2016


Formation, Structure, and EPR Detection of a High Spin Fe IV —Oxo Species Derived from Either an Fe III —Oxo or Fe III —OH Complex
journal, September 2010

  • Lacy, David C.; Gupta, Rupal; Stone, Kari L.
  • Journal of the American Chemical Society, Vol. 132, Issue 35
  • DOI: 10.1021/ja1047818

Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation
journal, April 2010

  • Shook, Ryan L.; Borovik, A. S.
  • Inorganic Chemistry, Vol. 49, Issue 8
  • DOI: 10.1021/ic901550k

Molecular Designs for Controlling the Local Environments around Metal Ions
journal, July 2015


Machine learning for heterogeneous catalyst design and discovery
journal, May 2018

  • Goldsmith, Bryan R.; Esterhuizen, Jacques; Liu, Jin-Xun
  • AIChE Journal, Vol. 64, Issue 7
  • DOI: 10.1002/aic.16198

Machine learning in catalysis
journal, April 2018


Machine learning for molecular and materials science
journal, July 2018


Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

Designing in the Face of Uncertainty: Exploiting Electronic Structure and Machine Learning Models for Discovery in Inorganic Chemistry
journal, March 2019


Error-Controlled Exploration of Chemical Reaction Networks with Gaussian Processes
journal, August 2018

  • Simm, Gregor N.; Reiher, Markus
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 10
  • DOI: 10.1021/acs.jctc.8b00504

To address surface reaction network complexity using scaling relations machine learning and DFT calculations
journal, March 2017

  • Ulissi, Zachary W.; Medford, Andrew J.; Bligaard, Thomas
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14621

Machine-Learning-Augmented Chemisorption Model for CO 2 Electroreduction Catalyst Screening
journal, August 2015

  • Ma, Xianfeng; Li, Zheng; Achenie, Luke E. K.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 18
  • DOI: 10.1021/acs.jpclett.5b01660

Machine learning meets volcano plots: computational discovery of cross-coupling catalysts
journal, January 2018

  • Meyer, Benjamin; Sawatlon, Boodsarin; Heinen, Stefan
  • Chemical Science, Vol. 9, Issue 35
  • DOI: 10.1039/C8SC01949E

Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution
journal, September 2018


Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry
journal, September 2018

  • Nandy, Aditya; Duan, Chenru; Janet, Jon Paul
  • Industrial & Engineering Chemistry Research, Vol. 57, Issue 42
  • DOI: 10.1021/acs.iecr.8b04015

Machine-Learning Energy Gaps of Porphyrins with Molecular Graph Representations
journal, April 2018

  • Li, Zheng; Omidvar, Noushin; Chin, Wei Shan
  • The Journal of Physical Chemistry A, Vol. 122, Issue 18
  • DOI: 10.1021/acs.jpca.8b02842

Leveraging Cheminformatics Strategies for Inorganic Discovery: Application to Redox Potential Design
journal, April 2017

  • Janet, Jon Paul; Gani, Terry Z. H.; Steeves, Adam H.
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 17
  • DOI: 10.1021/acs.iecr.7b00808

Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property Relationships
journal, November 2017

  • Janet, Jon Paul; Kulik, Heather J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 46
  • DOI: 10.1021/acs.jpca.7b08750

Accelerating Chemical Discovery with Machine Learning: Simulated Evolution of Spin Crossover Complexes with an Artificial Neural Network
journal, February 2018

  • Janet, Jon Paul; Chan, Lydia; Kulik, Heather J.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 5
  • DOI: 10.1021/acs.jpclett.8b00170

Predicting electronic structure properties of transition metal complexes with neural networks
journal, January 2017

  • Janet, Jon Paul; Kulik, Heather J.
  • Chemical Science, Vol. 8, Issue 7
  • DOI: 10.1039/C7SC01247K

A quantitative uncertainty metric controls error in neural network-driven chemical discovery
journal, January 2019

  • Janet, Jon Paul; Duan, Chenru; Yang, Tzuhsiung
  • Chemical Science, Vol. 10, Issue 34
  • DOI: 10.1039/C9SC02298H

Dynamics of Subnanometer Pt Clusters Can Break the Scaling Relationships in Catalysis
journal, January 2019

  • Zandkarimi, Borna; Alexandrova, Anastassia N.
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 3
  • DOI: 10.1021/acs.jpclett.8b03680

Lonely Atoms with Special Gifts: Breaking Linear Scaling Relationships in Heterogeneous Catalysis with Single-Atom Alloys
journal, September 2018

  • Darby, Matthew T.; Stamatakis, Michail; Michaelides, Angelos
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 18
  • DOI: 10.1021/acs.jpclett.8b01888

Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics
journal, August 2009

  • Ufimtsev, Ivan S.; Martinez, Todd J.
  • Journal of Chemical Theory and Computation, Vol. 5, Issue 10
  • DOI: 10.1021/ct9003004

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
journal, November 1994

  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.
  • The Journal of Physical Chemistry, Vol. 98, Issue 45, p. 11623-11627
  • DOI: 10.1021/j100096a001

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

A density-functional model of the dispersion interaction
journal, October 2005

  • Becke, Axel D.; Johnson, Erin R.
  • The Journal of Chemical Physics, Vol. 123, Issue 15
  • DOI: 10.1063/1.2065267

A post-Hartree–Fock model of intermolecular interactions
journal, July 2005

  • Johnson, Erin R.; Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 123, Issue 2
  • DOI: 10.1063/1.1949201

A post-Hartree-Fock model of intermolecular interactions: Inclusion of higher-order corrections
journal, May 2006

  • Johnson, Erin R.; Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 124, Issue 17
  • DOI: 10.1063/1.2190220

Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg
journal, January 1985

  • Hay, P. Jeffrey; Wadt, Willard R.
  • The Journal of Chemical Physics, Vol. 82, Issue 1
  • DOI: 10.1063/1.448799

molSimplify: A toolkit for automating discovery in inorganic chemistry
journal, July 2016

  • Ioannidis, Efthymios I.; Gani, Terry Z. H.; Kulik, Heather J.
  • Journal of Computational Chemistry, Vol. 37, Issue 22
  • DOI: 10.1002/jcc.24437

Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)–Oxo Sites in Magnesium-Diluted Fe 2 (dobdc)
journal, April 2015

  • Verma, Pragya; Vogiatzis, Konstantinos D.; Planas, Nora
  • Journal of the American Chemical Society, Vol. 137, Issue 17
  • DOI: 10.1021/jacs.5b00382

Accurate Coulomb-fitting basis sets for H to Rn
journal, January 2006

  • Weigend, Florian
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 9
  • DOI: 10.1039/b515623h

Hyperopt: A Python Library for Optimizing the Hyperparameters of Machine Learning Algorithms
conference, January 2013


Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity
journal, May 2015


Communication: Avoiding unbound anions in density functional calculations
journal, May 2011

  • Kim, Min-Cheol; Sim, Eunji; Burke, Kieron
  • The Journal of Chemical Physics, Vol. 134, Issue 17
  • DOI: 10.1063/1.3590364

Describing Anions by Density Functional Theory: Fractional Electron Affinity
journal, August 2010

  • Jensen, Frank
  • Journal of Chemical Theory and Computation, Vol. 6, Issue 9
  • DOI: 10.1021/ct1003324

C−H Bond Activations by Metal Oxo Compounds
journal, February 2010

  • Gunay, Ahmet; Theopold, Klaus H.
  • Chemical Reviews, Vol. 110, Issue 2
  • DOI: 10.1021/cr900269x

The Electronic Structure of the Vanadyl Ion
journal, February 1962

  • Ballhausen, C. J.; Gray, Harry B.
  • Inorganic Chemistry, Vol. 1, Issue 1
  • DOI: 10.1021/ic50001a022

Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex
journal, March 2017

  • Wang, Bin; Lee, Yong-Min; Tcho, Woon-Young
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14839

Learning from Failure: Predicting Electronic Structure Calculation Outcomes with Machine Learning Models
journal, March 2019

  • Duan, Chenru; Janet, Jon Paul; Liu, Fang
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 4
  • DOI: 10.1021/acs.jctc.9b00057

    Works referencing / citing this record:

    Reaction mechanisms at the homogeneous–heterogeneous frontier: insights from first-principles studies on ligand-decorated metal nanoparticles
    journal, January 2019

    • Ortuño, Manuel A.; López, Núria
    • Catalysis Science & Technology, Vol. 9, Issue 19
    • DOI: 10.1039/c9cy01351b

    In silico high throughput screening of bimetallic and single atom alloys using machine learning and ab initio microkinetic modelling
    journal, January 2020

    • Saxena, Shivam; Khan, Tuhin Suvra; Jalid, Fatima
    • Journal of Materials Chemistry A, Vol. 8, Issue 1
    • DOI: 10.1039/c9ta07651d

    Enumeration of de novo inorganic complexes for chemical discovery and machine learning
    journal, January 2020

    • Gugler, Stefan; Janet, Jon Paul; Kulik, Heather J.
    • Molecular Systems Design & Engineering, Vol. 5, Issue 1
    • DOI: 10.1039/c9me00069k

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.