skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sequential catalysis controls selectivity in electrochemical CO 2 reduction on Cu

Abstract

Electrochemical reduction of CO 2 in aqueous media is a strategy for sustainable production of fuels and commodity chemicals. Cu is the only catalyst which converts CO 2 to significant quantities of hydrocarbons and oxygenates. Here we demonstrate that oxygenate products can be favored over hydrocarbons by positioning a local source of CO generated by a CO producing catalyst (Au or Ag) in close proximity to a Cu catalyst. Use of a bimetallic device comprising interdigitated and independently controllable lines of Au and Cu allows the local CO concentration to be modulated. Notably, diffusional simulations show that the saturation concentration of CO can be exceeded locally. Actuating both the Au and Cu lines increases the oxygenate to ethylene ratio compared to actuating Cu only. Increasing the relative area of CO-producing Au relative to Cu also increases this ratio. These insights are translated into a second bimetallic system comprising Cu dots/lines patterned directly onto a Ag substrate, allowing for the distance between Cu and the CO generating metal to be precisely controlled. Controlling the relative areas of Ag and Cu allows for tuning of the oxygenate to ethylene ratio from 0.59 to 2.39 and an increase in oxygenate faradaic efficiency frommore » 21.4% to 41.4%, while maintaining the selectivity to C 2/C 3 products in the 50–65% range. We attribute this change in selectivity to be due to an increased *CO coverage on Cu. Finally, by utilizing diffusional transport of CO to the Cu, a sequential catalysis pathway is created which allows for the control of oxygenate selectivity in aqueous CO 2 reduction.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis and Materials Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1560561
Alternate Identifier(s):
OSTI ID: 1460876
Grant/Contract Number:  
[AC02-05CH11231; SC0004993; CHE-080405]
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
[ Journal Volume: 11; Journal Issue: 10]; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Lum, Yanwei, and Ager, Joel W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. United States: N. p., 2018. Web. doi:10.1039/c8ee01501e.
Lum, Yanwei, & Ager, Joel W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. United States. doi:10.1039/c8ee01501e.
Lum, Yanwei, and Ager, Joel W. Fri . "Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu". United States. doi:10.1039/c8ee01501e. https://www.osti.gov/servlets/purl/1560561.
@article{osti_1560561,
title = {Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu},
author = {Lum, Yanwei and Ager, Joel W.},
abstractNote = {Electrochemical reduction of CO2 in aqueous media is a strategy for sustainable production of fuels and commodity chemicals. Cu is the only catalyst which converts CO2 to significant quantities of hydrocarbons and oxygenates. Here we demonstrate that oxygenate products can be favored over hydrocarbons by positioning a local source of CO generated by a CO producing catalyst (Au or Ag) in close proximity to a Cu catalyst. Use of a bimetallic device comprising interdigitated and independently controllable lines of Au and Cu allows the local CO concentration to be modulated. Notably, diffusional simulations show that the saturation concentration of CO can be exceeded locally. Actuating both the Au and Cu lines increases the oxygenate to ethylene ratio compared to actuating Cu only. Increasing the relative area of CO-producing Au relative to Cu also increases this ratio. These insights are translated into a second bimetallic system comprising Cu dots/lines patterned directly onto a Ag substrate, allowing for the distance between Cu and the CO generating metal to be precisely controlled. Controlling the relative areas of Ag and Cu allows for tuning of the oxygenate to ethylene ratio from 0.59 to 2.39 and an increase in oxygenate faradaic efficiency from 21.4% to 41.4%, while maintaining the selectivity to C2/C3 products in the 50–65% range. We attribute this change in selectivity to be due to an increased *CO coverage on Cu. Finally, by utilizing diffusional transport of CO to the Cu, a sequential catalysis pathway is created which allows for the control of oxygenate selectivity in aqueous CO2 reduction.},
doi = {10.1039/c8ee01501e},
journal = {Energy & Environmental Science},
number = [10],
volume = [11],
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theoretical Considerations on the Electroreduction of CO to C 2 Species on Cu(100) Electrodes
journal, June 2013

  • Calle-Vallejo, Federico; Koper, Marc T. M.
  • Angewandte Chemie International Edition, Vol. 52, Issue 28
  • DOI: 10.1002/anie.201301470

Atomistic Mechanisms Underlying Selectivities in C 1 and C 2 Products from Electrochemical Reduction of CO on Cu(111)
journal, December 2016

  • Xiao, Hai; Cheng, Tao; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b06846

Facet Dependence of CO 2 Reduction Paths on Cu Electrodes
journal, December 2015


A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO 2 to CO
journal, December 2014

  • Rasul, Shahid; Anjum, Dalaver H.; Jedidi, Abdesslem
  • Angewandte Chemie International Edition, Vol. 54, Issue 7
  • DOI: 10.1002/anie.201410233

Nanostructured Metallic Electrocatalysts for Carbon Dioxide Reduction
journal, October 2014


Electroreduction of Carbon Dioxide to Hydrocarbons Using Bimetallic Cu–Pd Catalysts with Different Mixing Patterns
journal, December 2016

  • Ma, Sichao; Sadakiyo, Masaaki; Heima, Minako
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b10740

Electrochemical Detection of Protons Produced in an Electrode Reaction Using Interdigitated Microarray Electrodes
journal, November 2003

  • Ojima, Hiroyuki; Umeda, Minoru; Mohamedi, Mohamed
  • Electroanalysis, Vol. 15, Issue 21
  • DOI: 10.1002/elan.200302721

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Extraordinary Hydrogen Evolution and Oxidation Reaction Activity from Carbon Nanotubes and Graphitic Carbons
journal, July 2014

  • Das, Rajib Kumar; Wang, Yan; Vasilyeva, Svetlana V.
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn5030225

CO-CO coupling on Cu facets: Coverage, strain and field effects
journal, December 2016


Ethylene Hydrogenation over Platinum Nanoparticle Array Model Catalysts Fabricated by Electron Beam Lithography:  Determination of Active Metal Surface Area
journal, November 2002

  • Grunes, Jeff; Zhu, Ji; Anderson, Erik A.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 44
  • DOI: 10.1021/jp021641e

Cascade Catalysis for the Homogeneous Hydrogenation of CO 2 to Methanol
journal, November 2011

  • Huff, Chelsea A.; Sanford, Melanie S.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja208760j

Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide
journal, March 2016

  • Zhu, Dong Dong; Liu, Jin Long; Qiao, Shi Zhang
  • Advanced Materials, Vol. 28, Issue 18
  • DOI: 10.1002/adma.201504766

Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces
journal, August 2014

  • Kuhl, Kendra P.; Hatsukade, Toru; Cave, Etosha R.
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja505791r

Bubble nucleation from gas cavities — a review
journal, February 1999


The influence of pH on the reduction of CO and CO 2 to hydrocarbons on copper electrodes
journal, March 2014

  • Schouten, Klaas Jan P.; Pérez Gallent, Elena; Koper, Marc T. M.
  • Journal of Electroanalytical Chemistry, Vol. 716
  • DOI: 10.1016/j.jelechem.2013.08.033

Fabrication of Pt/Ru Nanoparticle Pair Arrays with Controlled Separation and their Electrocatalytic Properties
journal, March 2011

  • Wickman, Björn; Seidel, Yvonne E.; Jusys, Zenonas
  • ACS Nano, Vol. 5, Issue 4
  • DOI: 10.1021/nn1021692

The Tunable and Highly Selective Reduction Products on Ag@Cu Bimetallic Catalysts Toward CO 2 Electrochemical Reduction Reaction
journal, May 2017

  • Chang, Zhiyuan; Huo, Shengjuan; Zhang, Wei
  • The Journal of Physical Chemistry C, Vol. 121, Issue 21
  • DOI: 10.1021/acs.jpcc.7b01586

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
journal, February 2017

  • Cheng, Tao; Xiao, Hai; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 8
  • DOI: 10.1073/pnas.1612106114

Nucleation and growth of electrolytic gas bubbles under microgravity
journal, May 2014

  • Sakuma, Go; Fukunaka, Yasuhiro; Matsushima, Hisayoshi
  • International Journal of Hydrogen Energy, Vol. 39, Issue 15
  • DOI: 10.1016/j.ijhydene.2014.03.059

Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO 2 over Cu Nanowire Arrays
journal, April 2016

  • Ma, Ming; Djanashvili, Kristina; Smith, Wilson A.
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601282

How to Enhance Gas Removal from Porous Electrodes?
journal, December 2016

  • Kadyk, Thomas; Bruce, David; Eikerling, Michael
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep38780

Effect of CO 2 Bubbling into Aqueous Solutions Used for Electrochemical Reduction of CO 2 for Energy Conversion and Storage
journal, December 2014

  • Zhong, Heng; Fujii, Katsushi; Nakano, Yoshiaki
  • The Journal of Physical Chemistry C, Vol. 119, Issue 1
  • DOI: 10.1021/jp509043h

Ag–Sn Bimetallic Catalyst with a Core–Shell Structure for CO 2 Reduction
journal, January 2017

  • Luc, Wesley; Collins, Charles; Wang, Siwen
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b10435

New trends in the development of heterogeneous catalysts for electrochemical CO 2 reduction
journal, July 2016


Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces
journal, January 2014

  • Shi, Chuan; Hansen, Heine A.; Lausche, Adam C.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 10
  • DOI: 10.1039/c3cp54822h

Poisoning effect of adsorbed CO during CO 2 electroreduction on late transition metals
journal, January 2014

  • Akhade, Sneha A.; Luo, Wenjia; Nie, Xiaowa
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 38
  • DOI: 10.1039/C4CP03340J

Importance of Ag–Cu Biphasic Boundaries for Selective Electrochemical Reduction of CO 2 to Ethanol
journal, November 2017


Controlled electrochemical gas bubble release from electrodes entirely and partially covered with hydrophobic materials
journal, August 2011


The Importance of Cannizzaro-Type Reactions during Electrocatalytic Reduction of Carbon Dioxide
journal, January 2017

  • Birdja, Yuvraj Y.; Koper, Marc T. M.
  • Journal of the American Chemical Society, Vol. 139, Issue 5
  • DOI: 10.1021/jacs.6b12008

Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived Cu x Zn Catalysts
journal, November 2016


CO 2 reduction: the quest for electrocatalytic materials
journal, January 2017

  • Khezri, Bahareh; Fisher, Adrian C.; Pumera, Martin
  • Journal of Materials Chemistry A, Vol. 5, Issue 18
  • DOI: 10.1039/C6TA09875D

Sustainable hydrocarbon fuels by recycling CO 2 and H 2 O with renewable or nuclear energy
journal, January 2011

  • Graves, Christopher; Ebbesen, Sune D.; Mogensen, Mogens
  • Renewable and Sustainable Energy Reviews, Vol. 15, Issue 1
  • DOI: 10.1016/j.rser.2010.07.014

Substrate channelling as an approach to cascade reactions
journal, March 2016

  • Wheeldon, Ian; Minteer, Shelley D.; Banta, Scott
  • Nature Chemistry, Vol. 8, Issue 4
  • DOI: 10.1038/nchem.2459

Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum
journal, October 1998

  • Koper, M. T. M.; Jansen, A. P. J.; van Santen, R. A.
  • The Journal of Chemical Physics, Vol. 109, Issue 14
  • DOI: 10.1063/1.477230

Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels
journal, October 2015

  • Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 45
  • DOI: 10.1073/pnas.1519212112

A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper
journal, August 2006


Efficient solar-driven electrochemical CO 2 reduction to hydrocarbons and oxygenates
journal, January 2017

  • Gurudayal, Gurudayal; Bullock, James; Srankó, Dávid F.
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01764B

CO 2 reduction to acetate in mixtures of ultrasmall (Cu) n ,(Ag) m bimetallic nanoparticles
journal, December 2017

  • Wang, Ying; Wang, Degao; Dares, Christopher J.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 2
  • DOI: 10.1073/pnas.1713962115

Lateral Diffusion of Thiol Ligands on the Surface of Au Nanoparticles:  An Electron Paramagnetic Resonance Study
journal, January 2008

  • Ionita, Petre; Volkov, Aleksei; Jeschke, Gunnar
  • Analytical Chemistry, Vol. 80, Issue 1
  • DOI: 10.1021/ac071266s

Electrochemical Reduction of CO at a Copper Electrode
journal, September 1997

  • Hori, Yoshio; Takahashi, Ryutaro; Yoshinami, Yuzuru
  • The Journal of Physical Chemistry B, Vol. 101, Issue 36
  • DOI: 10.1021/jp970284i

Cu–Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO 2 to CO
journal, April 2016

  • Sarfraz, Saad; Garcia-Esparza, Angel T.; Jedidi, Abdesslem
  • ACS Catalysis, Vol. 6, Issue 5
  • DOI: 10.1021/acscatal.6b00269

Lattice Gas Model for CO Electrooxidation on Pt−Ru Bimetallic Surfaces
journal, July 1999

  • Koper, M. T. M.; Lukkien, J. J.; Jansen, A. P. J.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 26
  • DOI: 10.1021/jp990520k

Nanostructured electrocatalysts with tunable activity and selectivity
journal, March 2016


Tandem Catalysis for CO 2 Hydrogenation to C 2 –C 4 Hydrocarbons
journal, May 2017


Selectivity of CO 2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps
journal, January 2013

  • Nie, Xiaowa; Esopi, Monica R.; Janik, Michael J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 9
  • DOI: 10.1002/anie.201208320

Use of a Dynamic Monte Carlo Simulation in the Study of Nucleation-and-Growth Models for CO Electrochemical Oxidation
journal, September 2001

  • Korzeniewski, Carol; Kardash, Dawn
  • The Journal of Physical Chemistry B, Vol. 105, Issue 37
  • DOI: 10.1021/jp0114788

Bubble Formation at a Gas-Evolving Microelectrode
journal, April 2014

  • Fernández, Damaris; Maurer, Paco; Martine, Milena
  • Langmuir, Vol. 30, Issue 43
  • DOI: 10.1021/la500234r

Building Blocks for High Performance in Electrocatalytic CO 2 Reduction: Materials, Optimization Strategies, and Device Engineering
journal, August 2017

  • Larrazábal, Gastón O.; Martín, Antonio J.; Pérez-Ramírez, Javier
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 16
  • DOI: 10.1021/acs.jpclett.7b01380

Electrochemical Reduction of CO 2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene
journal, February 2017


Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li–Air Battery Electrolytes
journal, September 2012

  • Herranz, Juan; Garsuch, Arnd; Gasteiger, Hubert A.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 36
  • DOI: 10.1021/jp304277z

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Electrochemical CO 2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity
journal, October 2017

  • Clark, Ezra L.; Hahn, Christopher; Jaramillo, Thomas F.
  • Journal of the American Chemical Society, Vol. 139, Issue 44
  • DOI: 10.1021/jacs.7b08607

Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions
journal, October 2005

  • Gupta, N.; Gattrell, M.; MacDougall, B.
  • Journal of Applied Electrochemistry, Vol. 36, Issue 2
  • DOI: 10.1007/s10800-005-9058-y

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
journal, January 2010

  • Peterson, Andrew A.; Abild-Pedersen, Frank; Studt, Felix
  • Energy & Environmental Science, Vol. 3, Issue 9
  • DOI: 10.1039/c0ee00071j

Artificial Photosynthesis for Sustainable Fuel and Chemical Production
journal, January 2015

  • Kim, Dohyung; Sakimoto, Kelsey K.; Hong, Dachao
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201409116

Electroanalysis with interdigitated array microelectrodes
journal, July 1995


Recycling of carbon dioxide to methanol and derived products – closing the loop
journal, January 2014

  • Goeppert, Alain; Czaun, Miklos; Jones, John-Paul
  • Chem. Soc. Rev., Vol. 43, Issue 23
  • DOI: 10.1039/C4CS00122B

Current Status and Bioinspired Perspective of Electrochemical Conversion of CO 2 to a Long-Chain Hydrocarbon
journal, January 2017

  • Yang, Ki Dong; Lee, Chan Woo; Jin, Kyoungsuk
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 2
  • DOI: 10.1021/acs.jpclett.6b02748

H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover
journal, May 2013

  • Esposito, Daniel V.; Levin, Igor; Moffat, Thomas P.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3626

Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles
journal, September 2014

  • Kim, Dohyung; Resasco, Joaquin; Yu, Yi
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5948

Mechanistic Explanation of the pH Dependence and Onset Potentials for Hydrocarbon Products from Electrochemical Reduction of CO on Cu (111)
journal, January 2016

  • Xiao, Hai; Cheng, Tao; Goddard, William A.
  • Journal of the American Chemical Society, Vol. 138, Issue 2
  • DOI: 10.1021/jacs.5b11390

New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Bioinspired Approach to Multienzyme Cascade System Construction for Efficient Carbon Dioxide Reduction
journal, January 2014

  • Wang, Xiaoli; Li, Zheng; Shi, Jiafu
  • ACS Catalysis, Vol. 4, Issue 3
  • DOI: 10.1021/cs401096c

Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide
journal, September 2015

  • Kortlever, Ruud; Shen, Jing; Schouten, Klaas Jan P.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 20
  • DOI: 10.1021/acs.jpclett.5b01559

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0
journal, November 2015

  • Cheng, Tao; Xiao, Hai; Goddard, William A.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b02247