DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization

Abstract

Clarifying how increased atmospheric CO2 concentration (eCO2) adds to accelerated land carbon sequestration remains important since this process is the largest negative feedback in the coupled carbon–climate system. In this work, we constrain the sensitivity of the terrestrial carbon sink to eCO2 over the temperate Northern Hemisphere for the past five decades, using 12 terrestrial ecosystem models and data from seven CO2 enrichment experiments. This constraint uses the heuristic finding that the northern temperate carbon sink sensitivity to eCO2 is linearly related to the site-scale sensitivity across the models. The emerging data-constrained eCO2 sensitivity is 0.64 ± 0.28 PgC yr–1 per hundred ppm of eCO2. Extrapolating worldwide, this northern temperate sensitivity projects the global terrestrial carbon sink to increase by 3.5 ±1.9 PgC yr–1 for an increase in CO2 of 100 ppm. This value indicates that CO2 fertilization alone explains most of the observed increase in global land carbon sink since the 1960s. More CO2 enrichment experiments, particularly in boreal, arctic and tropical ecosystems, are required to explain further the responsible processes.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [7];  [5];  [8]; ORCiD logo [8];  [5]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11];  [5];  [12]; ORCiD logo [13];  [14]; ORCiD logo [15];  [16] more »; ORCiD logo [17]; ORCiD logo [18]; ORCiD logo [19];  [13]; ORCiD logo [20]; ORCiD logo [21];  [22];  [19]; ORCiD logo [23]; ORCiD logo [19]; ORCiD logo [24];  [25];  [1] « less
  1. Chinese Academy of Sciences (CAS), Beijing (China)
  2. Chinese Academy of Sciences (CAS), Beijing (China); Peking Univ., Beijing (China)
  3. International Inst. for Applied Systems Analysis, Laxenburg (Austria)
  4. Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA-CNRS-UVSQ), Gif-sur-Yvette (France). Laboratoire des Sciences du Climat et de l’Environnement
  5. Peking Univ., Beijing (China)
  6. Tsinghua Univ., Beijing (China)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  8. Hebei Univ. (China)
  9. Univ. of Antwerp, Wilrijk (Belgium)
  10. Centre for Ecological Research and Forestry Applications (CREAF), Barcelona (Spain); Consejo Superior de Investigaciones Cientificas (CSIC), Barcelona (Spain)
  11. Centre for Ecology and Hydrology, Wallingford (United Kingdom)
  12. McMaster Univ., Hamilton, ON (Canada)
  13. Carnegie Inst. of Science, Stanford, CA (United States)
  14. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  15. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  16. Northern Arizona Univ., Flagstaff, AZ (United States)
  17. National Inst. for Environmental Studies, Tsukuba (Japan)
  18. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
  19. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  20. Univ. of Quebec, Montreal, QC (Canada); Northwest A&F Univ., Shaanxi (China)
  21. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  22. Woods Hole Research Center, Falmouth, MA (United States); Northern Arizona Univ., Flagstaff, AZ (United States)
  23. Auburn Univ., AL (United States)
  24. Univ. of Maryland, College Park, MD (United States)
  25. Northwest A&F Univ., Shaanxi (China)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China; Strategic Priority Research Program (A) of the Chinese Academy of Sciences
OSTI Identifier:
1560427
Alternate Identifier(s):
OSTI ID: 1580931
Grant/Contract Number:  
AC05-00OR22725; AC02-05CH11231; XDA20050101; 2017YFA0604702; 41861134036; 41701089
Resource Type:
Accepted Manuscript
Journal Name:
Nature Geoscience
Additional Journal Information:
Journal Volume: 12; Journal Issue: 10; Journal ID: ISSN 1752-0894
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; carbon cycle; climate and Earth system modelling; climate-change ecology

Citation Formats

Liu, Yongwen, Piao, Shilong, Gasser, Thomas, Ciais, Philippe, Yang, Hui, Wang, Han, Keenan, Trevor F., Huang, Mengtian, Wan, Shiqiang, Song, Jian, Wang, Kai, Janssens, Ivan A., Peñuelas, Josep, Huntingford, Chris, Wang, Xuhui, Altaf Arain, Muhammad, Fang, Yuanyuan, Fisher, Joshua B., Huang, Maoyi, Huntzinger, Deborah N., Ito, Akihiko, Jain, Atul K., Mao, Jiafu, Michalak, Anna M., Peng, Changhui, Poulter, Benjamin, Schwalm, Christopher, Shi, Xiaoying, Tian, Hanqin, Wei, Yaxing, Zeng, Ning, Zhu, Qiuan, and Wang, Tao. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. United States: N. p., 2019. Web. doi:10.1038/s41561-019-0436-1.
Liu, Yongwen, Piao, Shilong, Gasser, Thomas, Ciais, Philippe, Yang, Hui, Wang, Han, Keenan, Trevor F., Huang, Mengtian, Wan, Shiqiang, Song, Jian, Wang, Kai, Janssens, Ivan A., Peñuelas, Josep, Huntingford, Chris, Wang, Xuhui, Altaf Arain, Muhammad, Fang, Yuanyuan, Fisher, Joshua B., Huang, Maoyi, Huntzinger, Deborah N., Ito, Akihiko, Jain, Atul K., Mao, Jiafu, Michalak, Anna M., Peng, Changhui, Poulter, Benjamin, Schwalm, Christopher, Shi, Xiaoying, Tian, Hanqin, Wei, Yaxing, Zeng, Ning, Zhu, Qiuan, & Wang, Tao. Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. United States. https://doi.org/10.1038/s41561-019-0436-1
Liu, Yongwen, Piao, Shilong, Gasser, Thomas, Ciais, Philippe, Yang, Hui, Wang, Han, Keenan, Trevor F., Huang, Mengtian, Wan, Shiqiang, Song, Jian, Wang, Kai, Janssens, Ivan A., Peñuelas, Josep, Huntingford, Chris, Wang, Xuhui, Altaf Arain, Muhammad, Fang, Yuanyuan, Fisher, Joshua B., Huang, Maoyi, Huntzinger, Deborah N., Ito, Akihiko, Jain, Atul K., Mao, Jiafu, Michalak, Anna M., Peng, Changhui, Poulter, Benjamin, Schwalm, Christopher, Shi, Xiaoying, Tian, Hanqin, Wei, Yaxing, Zeng, Ning, Zhu, Qiuan, and Wang, Tao. Mon . "Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization". United States. https://doi.org/10.1038/s41561-019-0436-1. https://www.osti.gov/servlets/purl/1560427.
@article{osti_1560427,
title = {Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization},
author = {Liu, Yongwen and Piao, Shilong and Gasser, Thomas and Ciais, Philippe and Yang, Hui and Wang, Han and Keenan, Trevor F. and Huang, Mengtian and Wan, Shiqiang and Song, Jian and Wang, Kai and Janssens, Ivan A. and Peñuelas, Josep and Huntingford, Chris and Wang, Xuhui and Altaf Arain, Muhammad and Fang, Yuanyuan and Fisher, Joshua B. and Huang, Maoyi and Huntzinger, Deborah N. and Ito, Akihiko and Jain, Atul K. and Mao, Jiafu and Michalak, Anna M. and Peng, Changhui and Poulter, Benjamin and Schwalm, Christopher and Shi, Xiaoying and Tian, Hanqin and Wei, Yaxing and Zeng, Ning and Zhu, Qiuan and Wang, Tao},
abstractNote = {Clarifying how increased atmospheric CO2 concentration (eCO2) adds to accelerated land carbon sequestration remains important since this process is the largest negative feedback in the coupled carbon–climate system. In this work, we constrain the sensitivity of the terrestrial carbon sink to eCO2 over the temperate Northern Hemisphere for the past five decades, using 12 terrestrial ecosystem models and data from seven CO2 enrichment experiments. This constraint uses the heuristic finding that the northern temperate carbon sink sensitivity to eCO2 is linearly related to the site-scale sensitivity across the models. The emerging data-constrained eCO2 sensitivity is 0.64 ± 0.28 PgC yr–1 per hundred ppm of eCO2. Extrapolating worldwide, this northern temperate sensitivity projects the global terrestrial carbon sink to increase by 3.5 ±1.9 PgC yr–1 for an increase in CO2 of 100 ppm. This value indicates that CO2 fertilization alone explains most of the observed increase in global land carbon sink since the 1960s. More CO2 enrichment experiments, particularly in boreal, arctic and tropical ecosystems, are required to explain further the responsible processes.},
doi = {10.1038/s41561-019-0436-1},
journal = {Nature Geoscience},
number = 10,
volume = 12,
place = {United States},
year = {Mon Sep 02 00:00:00 EDT 2019},
month = {Mon Sep 02 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 42 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Using ecosystem experiments to improve vegetation models
journal, May 2015

  • Medlyn, Belinda E.; Zaehle, Sönke; De Kauwe, Martin G.
  • Nature Climate Change, Vol. 5, Issue 6
  • DOI: 10.1038/nclimate2621

Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass
journal, September 2012

  • Reich, Peter B.; Hobbie, Sarah E.
  • Nature Climate Change, Vol. 3, Issue 3
  • DOI: 10.1038/nclimate1694

Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2
journal, September 2016

  • Wenzel, Sabrina; Cox, Peter M.; Eyring, Veronika
  • Nature, Vol. 538, Issue 7626
  • DOI: 10.1038/nature19772

The Coordination of Leaf Photosynthesis Links C and N Fluxes in C3 Plant Species
journal, June 2012


Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis
journal, January 2018

  • Fürstenau Togashi, Henrique; Prentice, Iain Colin; Atkin, Owen K.
  • Biogeosciences, Vol. 15, Issue 11
  • DOI: 10.5194/bg-15-3461-2018

Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability
journal, February 2013

  • Cox, Peter M.; Pearson, David; Booth, Ben B.
  • Nature, Vol. 494, Issue 7437
  • DOI: 10.1038/nature11882

Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
journal, November 2016

  • Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13428

Evaluation of 11 terrestrial carbon-nitrogen cycle models against observations from two temperate Free-Air CO 2 Enrichment studies
journal, January 2014

  • Zaehle, Sönke; Medlyn, Belinda E.; De Kauwe, Martin G.
  • New Phytologist, Vol. 202, Issue 3
  • DOI: 10.1111/nph.12697

A high-resolution data set of surface climate over global land areas
journal, January 2002

  • New, M.; Lister, D.; Hulme, M.
  • Climate Research, Vol. 21
  • DOI: 10.3354/cr021001

Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe
journal, December 2013

  • Peñuelas, Josep; Poulter, Benjamin; Sardans, Jordi
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3934

Recent trends and drivers of regional sources and sinks of carbon dioxide
journal, January 2015


Effect of increasing CO 2 on the terrestrial carbon cycle
journal, December 2014

  • Schimel, David; Stephens, Britton B.; Fisher, Joshua B.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 2
  • DOI: 10.1073/pnas.1407302112

Elevated atmospheric carbon dioxide increases soil carbon
journal, December 2005


Interactions between plant growth and soil nutrient cycling under elevated CO 2 : a meta-analysis
journal, November 2006


Short-term carbon cycling responses of a mature eucalypt woodland to gradual stepwise enrichment of atmospheric CO 2 concentration
journal, November 2015

  • Drake, John E.; Macdonald, Catriona A.; Tjoelker, Mark G.
  • Global Change Biology, Vol. 22, Issue 1
  • DOI: 10.1111/gcb.13109

Ecological Lessons from Free-Air CO 2 Enrichment (FACE) Experiments
journal, December 2011


Decadal trends in the seasonal-cycle amplitude of terrestrial CO 2 exchange resulting from the ensemble of terrestrial biosphere models
journal, May 2016

  • Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
  • Tellus B: Chemical and Physical Meteorology, Vol. 68, Issue 1
  • DOI: 10.3402/tellusb.v68.28968

Supplemental data of Global Carbon Budget 2017
dataset, January 2017


Partitioning global land evapotranspiration using CMIP5 models constrained by observations
journal, June 2018


The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design
journal, January 2013

  • Huntzinger, D. N.; Schwalm, C.; Michalak, A. M.
  • Geoscientific Model Development, Vol. 6, Issue 6
  • DOI: 10.5194/gmd-6-2121-2013

CO2 enhancement of forest productivity constrained by limited nitrogen availability
journal, October 2010

  • Norby, R. J.; Warren, J. M.; Iversen, C. M.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 45
  • DOI: 10.1073/pnas.1006463107

Exploiting synergies of global land cover products for carbon cycle modeling
journal, April 2006

  • Jung, Martin; Henkel, Kathrin; Herold, Martin
  • Remote Sensing of Environment, Vol. 101, Issue 4
  • DOI: 10.1016/j.rse.2006.01.020

Mycorrhizal association as a primary control of the CO 2 fertilization effect
journal, June 2016


Plausible rice yield losses under future climate warming
journal, December 2016


Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2
journal, August 2007

  • Finzi, A. C.; Norby, R. J.; Calfapietra, C.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 35
  • DOI: 10.1073/pnas.0706518104

Sensitivity of plants to changing atmospheric CO 2 concentration: from the geological past to the next century
journal, January 2013

  • Franks, Peter J.; Adams, Mark A.; Amthor, Jeffrey S.
  • New Phytologist, Vol. 197, Issue 4
  • DOI: 10.1111/nph.12104

Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions
journal, July 2017


A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species
journal, June 1980

  • Farquhar, G. D.; von Caemmerer, S.; Berry, J. A.
  • Planta, Vol. 149, Issue 1
  • DOI: 10.1007/BF00386231

Towards a universal model for carbon dioxide uptake by plants
journal, September 2017


Model-data synthesis for the next generation of forest free-air CO 2 enrichment (FACE) experiments
journal, August 2015

  • Norby, Richard J.; De Kauwe, Martin G.; Domingues, Tomas F.
  • New Phytologist, Vol. 209, Issue 1
  • DOI: 10.1111/nph.13593

CO 2 fertilization in temperate FACE experiments not representative of boreal and tropical forests
journal, July 2008


Constraining future terrestrial carbon cycle projections using observation-based water and carbon flux estimates
journal, March 2016

  • Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas
  • Global Change Biology, Vol. 22, Issue 6
  • DOI: 10.1111/gcb.13217

NACP MsTMIP: Global 0.5-degree Model Outputs in Standard Format, Version 1.0
collection, January 2018

  • Huntzinger, D. N.; Schwalm, C. R.; Wei, Y.
  • ORNL Distributed Active Archive Center
  • DOI: 10.3334/ORNLDAAC/1225

On the contribution of CO 2 fertilization to the missing biospheric sink
journal, December 1995

  • Friedlingstein, P.; Fung, I.; Holland, E.
  • Global Biogeochemical Cycles, Vol. 9, Issue 4
  • DOI: 10.1029/95GB02381

Global Carbon Budget 2017
journal, January 2018

  • Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-405-2018

Historical warming reduced due to enhanced land carbon uptake
journal, September 2013

  • Shevliakova, E.; Stouffer, R. J.; Malyshev, S.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 42
  • DOI: 10.1073/pnas.1314047110

NACP MsTMIP: Global and North American Driver Data for Multi-Model Intercomparison
collection, January 2014

  • Wei, Y.; Liu, Shishi; Huntzinger, D. N.
  • ORNL Distributed Active Archive Center
  • DOI: 10.3334/ORNLDAAC/1220

The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data
journal, January 2014

  • Wei, Y.; Liu, S.; Huntzinger, D. N.
  • Geoscientific Model Development, Vol. 7, Issue 6
  • DOI: 10.5194/gmd-7-2875-2014

NACP MsTMIP: Global 0.5-degree Model Outputs in Standard Format, Version 1.0
collection, January 2018

  • Huntzinger, D. N.; Schwalm, C. R.; Wei, Y.
  • ORNL Distributed Active Archive Center
  • DOI: 10.3334/ornldaac/1326

Global Carbon Budget 2017
text, January 2018


The North American Carbon Program Multi-scale synthesis and Terrestrial Model Intercomparison Project – Part 1: Overview and experimental design
journal, January 2013

  • Huntzinger, D. N.; Schwalm, C.; Michalak, A. M.
  • Geoscientific Model Development Discussions, Vol. 6, Issue 3
  • DOI: 10.5194/gmdd-6-3977-2013

Recent trends and drivers of regional sources and sinks of carbon dioxide
text, January 2015


The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data
journal, January 2013

  • Wei, Y.; Liu, S.; Huntzinger, D. N.
  • Geoscientific Model Development Discussions, Vol. 6, Issue 4
  • DOI: 10.5194/gmdd-6-5375-2013

Works referencing / citing this record:

Global vegetation biomass production efficiency constrained by models and observations
journal, September 2019

  • He, Yue; Peng, Shushi; Liu, Yongwen
  • Global Change Biology, Vol. 26, Issue 3
  • DOI: 10.1111/gcb.14816

Interannual variation of terrestrial carbon cycle: Issues and perspectives
journal, November 2019

  • Piao, Shilong; Wang, Xuhui; Wang, Kai
  • Global Change Biology, Vol. 26, Issue 1
  • DOI: 10.1111/gcb.14884

Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling
journal, April 2020

  • Soong, Jennifer L.; Fuchslueger, Lucia; Marañon‐Jimenez, Sara
  • Global Change Biology, Vol. 26, Issue 4
  • DOI: 10.1111/gcb.14962