skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors

Abstract

Ultra-nanoporous materials derived from fluorinated covalent triazine frameworks (CTFs) have been developed for highly efficient CO2 capture. A CO2 uptake capacity of 6.58 mmol g–1 at 273 K, 1 bar (2.45 mmol g–1 at 0.15 bar) is achieved. The excellent performance is due to the presence of ultra-micropores (0.6–0.7 nm) that tightly fit CO2 and strong electrostatic interactions from the residual fluorine atoms within the framework. Here, both molecular simulation and deep learning study predict that CTFs with a F content of ~4.8 wt% and pore size distribution around ~0.7 nm can give rise to the highest CO2 uptake capacity.

Authors:
 [1];  [2];  [3];  [3]; ORCiD logo [3];  [4]; ORCiD logo [4];  [2]; ORCiD logo [5]; ORCiD logo [1]
  1. The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of California, Riverside, CA (United States)
  3. The Univ. of Tennessee, Knoxville, TN (United States)
  4. Univ. of Houston, Houston, TX (United States)
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1560395
Alternate Identifier(s):
OSTI ID: 1542521
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 7; Journal Issue: 29; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yang, Zhenzhen, Wang, Song, Zhang, Zihao, Guo, Wei, Jie, Kecheng, Hashim, Mohamed I., Miljanić, Ognjen Š., Jiang, De-en, Popovs, Ilja, and Dai, Sheng. Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors. United States: N. p., 2019. Web. https://doi.org/10.1039/c9ta02573a.
Yang, Zhenzhen, Wang, Song, Zhang, Zihao, Guo, Wei, Jie, Kecheng, Hashim, Mohamed I., Miljanić, Ognjen Š., Jiang, De-en, Popovs, Ilja, & Dai, Sheng. Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors. United States. https://doi.org/10.1039/c9ta02573a
Yang, Zhenzhen, Wang, Song, Zhang, Zihao, Guo, Wei, Jie, Kecheng, Hashim, Mohamed I., Miljanić, Ognjen Š., Jiang, De-en, Popovs, Ilja, and Dai, Sheng. Fri . "Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors". United States. https://doi.org/10.1039/c9ta02573a. https://www.osti.gov/servlets/purl/1560395.
@article{osti_1560395,
title = {Influence of fluorination on CO2 adsorption in materials derived from fluorinated covalent triazine framework precursors},
author = {Yang, Zhenzhen and Wang, Song and Zhang, Zihao and Guo, Wei and Jie, Kecheng and Hashim, Mohamed I. and Miljanić, Ognjen Š. and Jiang, De-en and Popovs, Ilja and Dai, Sheng},
abstractNote = {Ultra-nanoporous materials derived from fluorinated covalent triazine frameworks (CTFs) have been developed for highly efficient CO2 capture. A CO2 uptake capacity of 6.58 mmol g–1 at 273 K, 1 bar (2.45 mmol g–1 at 0.15 bar) is achieved. The excellent performance is due to the presence of ultra-micropores (0.6–0.7 nm) that tightly fit CO2 and strong electrostatic interactions from the residual fluorine atoms within the framework. Here, both molecular simulation and deep learning study predict that CTFs with a F content of ~4.8 wt% and pore size distribution around ~0.7 nm can give rise to the highest CO2 uptake capacity.},
doi = {10.1039/c9ta02573a},
journal = {Journal of Materials Chemistry. A},
number = 29,
volume = 7,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A search for selectivity to enable CO 2 capture with porous adsorbents
journal, January 2018

  • Oschatz, M.; Antonietti, M.
  • Energy & Environmental Science, Vol. 11, Issue 1
  • DOI: 10.1039/C7EE02110K

Perspective of microporous metal–organic frameworks for CO 2 capture and separation
journal, January 2014

  • Zhang, Zhangjing; Yao, Zi-Zhu; Xiang, Shengchang
  • Energy & Environmental Science, Vol. 7, Issue 9
  • DOI: 10.1039/C4EE00143E

Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis
journal, January 2016

  • Puthiaraj, Pillaiyar; Lee, Yu-Ri; Zhang, Siqian
  • Journal of Materials Chemistry A, Vol. 4, Issue 42
  • DOI: 10.1039/C6TA06089G

Dissecting Porosity in Molecular Crystals: Influence of Geometry, Hydrogen Bonding, and [π···π] Stacking on the Solid-State Packing of Fluorinated Aromatics
journal, April 2018

  • Hashim, Mohamed I.; Le, Ha T. M.; Chen, Teng-Hao
  • Journal of the American Chemical Society, Vol. 140, Issue 18
  • DOI: 10.1021/jacs.8b02869

Synthesis of Porous Covalent Quinazoline Networks (CQNs) and Their Gas Sorption Properties
journal, December 2018

  • Buyukcakir, Onur; Yuksel, Recep; Jiang, Yi
  • Angewandte Chemie International Edition, Vol. 58, Issue 3
  • DOI: 10.1002/anie.201813075

Hierarchically porous materials: synthesis strategies and structure design
journal, January 2017

  • Yang, Xiao-Yu; Chen, Li-Hua; Li, Yu
  • Chemical Society Reviews, Vol. 46, Issue 2
  • DOI: 10.1039/C6CS00829A

Efficient CO 2 Removal for Ultra - Pure CO Production by Two Hybrid Ultramicroporous Materials
journal, February 2018

  • Chen, Kai-Jie; Yang, Qing-Yuan; Sen, Susan
  • Angewandte Chemie International Edition, Vol. 57, Issue 13
  • DOI: 10.1002/anie.201706090

Design of Nonionic Surfactants for Supercritical Carbon Dioxide
journal, December 1996


Porous Ionic Polymers as a Robust and Efficient Platform for Capture and Chemical Fixation of Atmospheric CO 2
journal, December 2016


Prediction of Carbon Dioxide Adsorption via Deep Learning
journal, December 2018

  • Zhang, Zihao; Schott, Jennifer A.; Liu, Miaomiao
  • Angewandte Chemie International Edition, Vol. 58, Issue 1
  • DOI: 10.1002/anie.201812363

Synthesis and lectin recognition studies of glycosylated polystyrene microspheres functionalized via thiol–para-fluorine “click” reaction
journal, January 2012

  • Álvarez-Paino, M.; Muñoz-Bonilla, A.; Marcelo, G.
  • Polymer Chemistry, Vol. 3, Issue 12
  • DOI: 10.1039/c2py20527k

Nitrogen-Rich Covalent Triazine Frameworks as High-Performance Platforms for Selective Carbon Capture and Storage
journal, November 2015


Recent advances in solid sorbents for CO 2 capture and new development trends
journal, January 2014

  • Wang, Junya; Huang, Liang; Yang, Ruoyan
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE01647E

CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate
journal, October 2015


Oxidation-stable amine-containing adsorbents for carbon dioxide capture
journal, February 2018


Porous Organic Materials: Strategic Design and Structure–Function Correlation
journal, December 2016


Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity
journal, March 2010

  • Bojdys, Michael J.; Jeromenok, Jekaterina; Thomas, Arne
  • Advanced Materials, Vol. 22, Issue 19
  • DOI: 10.1002/adma.200903436

Dispersion Polymerizations in Supercritical Carbon Dioxide
journal, July 1994


Porous Organic Polymers for Post-Combustion Carbon Capture
journal, July 2017


Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis
journal, April 2008

  • Kuhn, Pierre; Antonietti, Markus; Thomas, Arne
  • Angewandte Chemie International Edition, Vol. 47, Issue 18
  • DOI: 10.1002/anie.200705710

Carbon dioxide capture in amorphous porous organic polymers
journal, January 2017

  • Wang, Wenjing; Zhou, Mi; Yuan, Daqiang
  • Journal of Materials Chemistry A, Vol. 5, Issue 4
  • DOI: 10.1039/C6TA09234A

Carbon Dioxide Capture: Prospects for New Materials
journal, July 2010

  • D'Alessandro, Deanna M.; Smit, Berend; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 49, Issue 35, p. 6058-6082
  • DOI: 10.1002/anie.201000431

Hierarchical N-Doped Carbon as CO 2 Adsorbent with High CO 2 Selectivity from Rationally Designed Polypyrrole Precursor
journal, January 2016

  • To, John W. F.; He, Jiajun; Mei, Jianguo
  • Journal of the American Chemical Society, Vol. 138, Issue 3
  • DOI: 10.1021/jacs.5b11955

New Layered Triazine Framework/Exfoliated 2D Polymer with Superior Sodium-Storage Properties
journal, January 2018


In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO 2 Capture Performance
journal, September 2016

  • Zhu, Xiang; Tian, Chengcheng; Veith, Gabriel M.
  • Journal of the American Chemical Society, Vol. 138, Issue 36
  • DOI: 10.1021/jacs.6b07644

Microporous Organic Materials for Membrane-Based Gas Separation
journal, October 2017


Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach
journal, October 2017

  • Wang, Kewei; Yang, Li-Ming; Wang, Xi
  • Angewandte Chemie International Edition, Vol. 56, Issue 45
  • DOI: 10.1002/anie.201708548

A fluorine-containing hydrophobic covalent triazine framework with excellent selective CO 2 capture performance
journal, January 2018

  • Wang, Guangbo; Leus, Karen; Jena, Himanshu Sekhar
  • Journal of Materials Chemistry A, Vol. 6, Issue 15
  • DOI: 10.1039/C7TA08913A

Global carbon dioxide levels near worrisome milestone
journal, April 2013


From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities
journal, January 2013

  • Bhunia, Asamanjoy; Vasylyeva, Vera; Janiak, Christoph
  • Chemical Communications, Vol. 49, Issue 38
  • DOI: 10.1039/c3cc41382a

Hypercrosslinked porous polymer materials: design, synthesis, and applications
journal, January 2017

  • Tan, Liangxiao; Tan, Bien
  • Chemical Society Reviews, Vol. 46, Issue 11
  • DOI: 10.1039/C6CS00851H

Carbon capture and storage update
journal, January 2014

  • Boot-Handford, Matthew E.; Abanades, Juan C.; Anthony, Edward J.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42350F

Amine Scrubbing for CO2 Capture
journal, September 2009


Imine-Linked Porous Polymer Frameworks with High Small Gas (H 2 , CO 2 , CH 4 , C 2 H 2 ) Uptake and CO 2 /N 2 Selectivity
journal, April 2013

  • Zhu, Youlong; Long, Hai; Zhang, Wei
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400019f

Synthesis of Fluoropolymers in Supercritical Carbon Dioxide
journal, August 1992


A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture
journal, January 2013

  • Zhao, Yunfeng; Yao, Ke Xin; Teng, Baiyang
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42548g

Template- and Metal-Free Synthesis of Nitrogen-Rich Nanoporous “Noble” Carbon Materials by Direct Pyrolysis of a Preorganized Hexaazatriphenylene Precursor
journal, July 2018

  • Walczak, Ralf; Kurpil, Bogdan; Savateev, Aleksandr
  • Angewandte Chemie International Edition, Vol. 57, Issue 33
  • DOI: 10.1002/anie.201804359

Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs
journal, October 2015

  • Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya
  • Angewandte Chemie International Edition, Vol. 54, Issue 47
  • DOI: 10.1002/anie.201505149

Evaluating different classes of porous materials for carbon capture
journal, January 2014

  • Huck, Johanna M.; Lin, Li-Chiang; Berger, Adam H.
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE02636E

Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles
journal, January 2009

  • Kuhn, Pierre; Thomas, Arne; Antonietti, Markus
  • Macromolecules, Vol. 42, Issue 1
  • DOI: 10.1021/ma802322j

A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO2 Separation
journal, June 2012

  • Zhu, Xiang; Tian, Chengcheng; Mahurin, Shannon M.
  • Journal of the American Chemical Society, Vol. 134, Issue 25, p. 10478-10484
  • DOI: 10.1021/ja304879c

Controlling Monomer Feeding Rate to Achieve Highly Crystalline Covalent Triazine Frameworks
journal, March 2019


Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene
journal, April 2013

  • Katekomol, Phisan; Roeser, Jérôme; Bojdys, Michael
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm303751n

A fluorene based covalent triazine framework with high CO 2 and H 2 capture and storage capacities
journal, January 2014

  • Hug, Stephan; Mesch, Maria B.; Oh, Hyunchul
  • J. Mater. Chem. A, Vol. 2, Issue 16
  • DOI: 10.1039/C3TA15417C

Carbon Dioxide Capture Adsorbents: Chemistry and Methods
journal, March 2017


Optimal Size of a Cylindrical Pore for Post-Combustion CO 2 Capture
journal, September 2017

  • Wang, Song; Tian, Ziqi; Dai, Sheng
  • The Journal of Physical Chemistry C, Vol. 121, Issue 40
  • DOI: 10.1021/acs.jpcc.7b05516

Mesoporous Fluorinated Metal-Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs
journal, October 2015

  • Chen, Teng-Hao; Popov, Ilya; Kaveevivitchai, Watchareeya
  • Angewandte Chemie, Vol. 127, Issue 47
  • DOI: 10.1002/ange.201505149

    Works referencing / citing this record:

    A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO 2
    journal, January 2019

    • Yu, Xiaoxiao; Yang, Zhenzhen; Zhang, Fengtao
    • Chemical Communications, Vol. 55, Issue 83
    • DOI: 10.1039/c9cc07043e

    Covalent triazine frameworks for carbon dioxide capture
    journal, January 2019

    • Wang, Han; Jiang, Danni; Huang, Danlian
    • Journal of Materials Chemistry A, Vol. 7, Issue 40
    • DOI: 10.1039/c9ta06847c