skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study

Abstract

Lithium-metal is a desired material for anodes of Li-ion and beyond Li-ion batteries because of its large theoretical specific capacity of 3860 mA h g-1 (the highest known so far), low density, and extremely low potential. Unfortunately, there are several problems that restrict the practical application of lithium-metal anodes, such as the formation of dendrites and reactivity with electrolytes. We present here a study of lithium dendrite formation on a Li-metal anode covered by a cracked solid electrolyte interface (SEI) of LiF in contact with a typical liquid electrolyte composed of 1 M LiPF6 salt solvated in ethylene carbonate. The study uses classical molecular dynamics on a model nanobattery. We tested three ways to charge the nanobattery: (1) constant current at a rate of one Li+ per 0.4 ps, (2) pulse train 10 Li+ per 4 ps, and (3) constant number ions in the electrolyte: one Li+ enters the electrolyte from the cathode as one Li+ exits the electrolyte to the anode. We found that although the SEI does not interfere with the lithiation, the mere presence of a crack in the SEI boosts and guides dendrite formation at temperatures between 325 K and 410.7 K at any C-rate, beingmore » more favorable at 325 K than at 410.7 K. On the other hand, we find that a higher C-rate (2.2C) favors the lithium dendrite formation compared to a lower C-rate (1.6C). Thus the battery could store more energy in a safe way at a lower C-rate.« less

Authors:
 [1]; ORCiD logo [1]
  1. Department of Chemical Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Texas A&M University, College Station
Publication Date:
Research Org.:
Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1560276
Alternate Identifier(s):
OSTI ID: 1614098
Grant/Contract Number:  
EE0008210
Resource Type:
Published Article
Journal Name:
RSC Advances
Additional Journal Information:
Journal Name: RSC Advances Journal Volume: 9 Journal Issue: 48; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemistry

Citation Formats

Selis, Luis A., and Seminario, Jorge M.. Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study. United Kingdom: N. p., 2019. Web. https://doi.org/10.1039/C9RA05067A.
Selis, Luis A., & Seminario, Jorge M.. Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study. United Kingdom. https://doi.org/10.1039/C9RA05067A
Selis, Luis A., and Seminario, Jorge M.. Wed . "Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study". United Kingdom. https://doi.org/10.1039/C9RA05067A.
@article{osti_1560276,
title = {Dendrite formation in Li-metal anodes: an atomistic molecular dynamics study},
author = {Selis, Luis A. and Seminario, Jorge M.},
abstractNote = {Lithium-metal is a desired material for anodes of Li-ion and beyond Li-ion batteries because of its large theoretical specific capacity of 3860 mA h g-1 (the highest known so far), low density, and extremely low potential. Unfortunately, there are several problems that restrict the practical application of lithium-metal anodes, such as the formation of dendrites and reactivity with electrolytes. We present here a study of lithium dendrite formation on a Li-metal anode covered by a cracked solid electrolyte interface (SEI) of LiF in contact with a typical liquid electrolyte composed of 1 M LiPF6 salt solvated in ethylene carbonate. The study uses classical molecular dynamics on a model nanobattery. We tested three ways to charge the nanobattery: (1) constant current at a rate of one Li+ per 0.4 ps, (2) pulse train 10 Li+ per 4 ps, and (3) constant number ions in the electrolyte: one Li+ enters the electrolyte from the cathode as one Li+ exits the electrolyte to the anode. We found that although the SEI does not interfere with the lithiation, the mere presence of a crack in the SEI boosts and guides dendrite formation at temperatures between 325 K and 410.7 K at any C-rate, being more favorable at 325 K than at 410.7 K. On the other hand, we find that a higher C-rate (2.2C) favors the lithium dendrite formation compared to a lower C-rate (1.6C). Thus the battery could store more energy in a safe way at a lower C-rate.},
doi = {10.1039/C9RA05067A},
journal = {RSC Advances},
number = 48,
volume = 9,
place = {United Kingdom},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C9RA05067A

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study
journal, October 2011


Dendrite formation in silicon anodes of lithium-ion batteries
journal, January 2018

  • Selis, Luis A.; Seminario, Jorge M.
  • RSC Advances, Vol. 8, Issue 10
  • DOI: 10.1039/C7RA12690E

In-Situ Observations of Lithium Dendrite Growth
journal, January 2018


UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
journal, March 2008


Reductive Decomposition Reactions of Ethylene Carbonate by Explicit Electron Transfer from Lithium: An eReaxFF Molecular Dynamics Study
journal, November 2016

  • Islam, Md Mahbubul; van Duin, Adri C. T.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 48
  • DOI: 10.1021/acs.jpcc.6b08688

Towards superior volumetric performance: design and preparation of novel carbon materials for energy storage
journal, January 2015

  • Zhang, Chen; Lv, Wei; Tao, Ying
  • Energy & Environmental Science, Vol. 8, Issue 5
  • DOI: 10.1039/C5EE00389J

Observation of Lithium Dendrites at Ambient Temperature and Below
journal, December 2014

  • Love, C. T.; Baturina, O. A.; Swider-Lyons, K. E.
  • ECS Electrochemistry Letters, Vol. 4, Issue 2
  • DOI: 10.1149/2.0041502eel

Lithium Diffusion Mechanism through Solid–Electrolyte Interphase in Rechargeable Lithium Batteries
journal, March 2019

  • Ramasubramanian, Ajaykrishna; Yurkiv, Vitaliy; Foroozan, Tara
  • The Journal of Physical Chemistry C, Vol. 123, Issue 16
  • DOI: 10.1021/acs.jpcc.9b00436

Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies
journal, January 2017

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 31
  • DOI: 10.1039/C7CP03304D

Dielectric properties and relaxation in ethylene carbonate and propylene carbonate
journal, September 1972

  • Payne, Richard; Theodorou, Ignatius E.
  • The Journal of Physical Chemistry, Vol. 76, Issue 20
  • DOI: 10.1021/j100664a019

Lithium dendrite growth mechanisms in liquid electrolytes
journal, November 2017


Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries
journal, January 2000

  • Aurbach, D.; Zinigrad, E.; Teller, H.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393349

Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach
journal, June 2018


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes
journal, March 2018

  • Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201801513

Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Molecular dynamics simulation of diffusion and viscosity of liquid lithium fluoride
journal, January 2016


Dielectric Constant, Dipole Moment, and Solubility Parameters of Some Cyclic Acid Esters
journal, March 2006

  • Chernyak, Yury
  • Journal of Chemical & Engineering Data, Vol. 51, Issue 2
  • DOI: 10.1021/je050341y

Electronegativity-equalization method for the calculation of atomic charges in molecules
journal, July 1986

  • Mortier, Wilfried J.; Ghosh, Swapan K.; Shankar, S.
  • Journal of the American Chemical Society, Vol. 108, Issue 15
  • DOI: 10.1021/ja00275a013

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

A unified formulation of the constant temperature molecular dynamics methods
journal, July 1984

  • Nosé, Shuichi
  • The Journal of Chemical Physics, Vol. 81, Issue 1
  • DOI: 10.1063/1.447334

Transition of lithium growth mechanisms in liquid electrolytes
journal, January 2016

  • Bai, Peng; Li, Ju; Brushett, Fikile R.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01674J

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Reactions of Singly-Reduced Ethylene Carbonate in Lithium Battery Electrolytes: A Molecular Dynamics Simulation Study Using the ReaxFF
journal, December 2011

  • Bedrov, Dmitry; Smith, Grant D.; van Duin, Adri C. T.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 11
  • DOI: 10.1021/jp210345b

Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh
journal, March 2012

  • Brown, W. Michael; Kohlmeyer, Axel; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 183, Issue 3
  • DOI: 10.1016/j.cpc.2011.10.012

A second nearest-neighbor embedded atom method interatomic potential for Li–Si alloys
journal, June 2012


Carbon enables the practical use of lithium metal in a battery
journal, October 2017


Analysis of a Li-Ion Nanobattery with Graphite Anode Using Molecular Dynamics Simulations
journal, June 2017

  • Ponce, Victor; Galvez-Aranda, Diego E.; Seminario, Jorge M.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 23
  • DOI: 10.1021/acs.jpcc.7b04190

Implementing molecular dynamics on hybrid high performance computers – short range forces
journal, April 2011

  • Brown, W. Michael; Wang, Peng; Plimpton, Steven J.
  • Computer Physics Communications, Vol. 182, Issue 4
  • DOI: 10.1016/j.cpc.2010.12.021

Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries
journal, June 2017


A computational investigation of thermal effect on lithium dendrite growth
journal, April 2018


Nanostructured energy materials for electrochemical energy conversion and storage: A review
journal, November 2016


Extensions of the molecular dynamics simulation method. II. Isothermal systems
journal, September 1983

  • Haile, J. M.; Gupta, S.
  • The Journal of Chemical Physics, Vol. 79, Issue 6
  • DOI: 10.1063/1.446137

Certain Topics in Telegraph Transmission Theory
journal, April 1928


Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes
journal, January 2017

  • Chen, Kuan-Hung; Wood, Kevin N.; Kazyak, Eric
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00371D

Improved Graphite Anode for Lithium-Ion Batteries Chemically
journal, January 1996

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1
  • DOI: 10.1149/1.1836372

Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
journal, December 2009


Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes
journal, November 2018


Effect of the Electrolyte Composition on SEI Reactions at Si Anodes of Li-Ion Batteries
journal, March 2015

  • Martinez de la Hoz, Julibeth M.; Soto, Fernando A.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 13
  • DOI: 10.1021/acs.jpcc.5b01228

PACKMOL: A package for building initial configurations for molecular dynamics simulations
journal, October 2009

  • Martínez, L.; Andrade, R.; Birgin, E. G.
  • Journal of Computational Chemistry, Vol. 30, Issue 13
  • DOI: 10.1002/jcc.21224

Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells
journal, January 2012

  • Zhamu, Aruna; Chen, Guorong; Liu, Chenguang
  • Energy Environ. Sci., Vol. 5, Issue 2
  • DOI: 10.1039/C2EE02911A

Interionic potentials in alkali halides and their use in simulations of the molten salts
journal, May 1976


Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
journal, July 2014


Molecular dynamics simulations of the first charge of a Li-ion—Si-anode nanobattery
journal, March 2017

  • Galvez-Aranda, Diego E.; Ponce, Victor; Seminario, Jorge M.
  • Journal of Molecular Modeling, Vol. 23, Issue 4
  • DOI: 10.1007/s00894-017-3283-2

Modeling solid-electrolyte interfacial phenomena in silicon anodes
journal, August 2016


The recent advances in constructing designed electrode in lithium metal batteries
journal, December 2017

  • Cui, Jiecheng; Zhan, Tian-Guang; Zhang, Kang-Da
  • Chinese Chemical Letters, Vol. 28, Issue 12, p. 2171-2179
  • DOI: 10.1016/j.cclet.2017.11.039

The role of nanotechnology in the development of battery materials for electric vehicles
journal, December 2016


Simulations of a LiF Solid Electrolyte Interphase Cracking on Silicon Anodes Using Molecular Dynamics
journal, January 2018

  • Galvez-Aranda, Diego E.; Seminario, Jorge M.
  • Journal of The Electrochemical Society, Vol. 165, Issue 3
  • DOI: 10.1149/2.0991803jes

Crystallographic Data 186. Lithium
journal, December 1959

  • Nadler, M. R/.; Kempier, C. P.
  • Analytical Chemistry, Vol. 31, Issue 12
  • DOI: 10.1021/ac60156a007

Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study
journal, November 2013

  • Wang, Huanyu; Ji, Xiao; Chen, Chi
  • AIP Advances, Vol. 3, Issue 11
  • DOI: 10.1063/1.4829440

VMD: Visual molecular dynamics
journal, February 1996


Lithium-Ion Model Behavior in an Ethylene Carbonate Electrolyte Using Molecular Dynamics
journal, July 2016

  • Kumar, Narendra; Seminario, Jorge M.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 30
  • DOI: 10.1021/acs.jpcc.6b03709

    Works referencing / citing this record:

    Model systems for screening and investigation of lithium metal electrode chemistry and dendrite formation
    journal, January 2020

    • Kamphaus, Ethan P.; Hight, Karoline; Dermott, Micah
    • Physical Chemistry Chemical Physics, Vol. 22, Issue 2
    • DOI: 10.1039/c9cp06020k