skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 6, 2020

Title: Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions

Abstract

Using highly resolved 3-D radiation-hydrodynamic simulations, we identify a novel mechanism by which the deleterious impact of laser imprinting is mitigated in direct-drive inertial confinement fusion. Unsupported shocks and associated rarefaction flows, commonly produced with short laser bursts, are found to reduce imprint modulations prior to target acceleration. Optimization through the choice of laser pulse with picket(s) and target dimensions may improve the stability of lower adiabat designs, thus providing the necessary margin for ignition-relevant implosions.

Authors:
 [1];  [2];  [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. Naval Research Lab. (NRL), Washington, DC (United States). Plasma Physics Div.
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
Contributing Org.:
[Univ. of Rochester, NY (United States). Lab. for Laser Energetics]
OSTI Identifier:
1560055
Alternate Identifier(s):
OSTI ID: 1547983
Report Number(s):
[2018-299, 1510]
[Journal ID: ISSN 0031-9007; PRLTAO; 2018-299, 2470, 1510]
Grant/Contract Number:  
[NA0003856]
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
[ Journal Volume: 123; Journal Issue: 6]; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Igumenshchev, I. V., Velikovich, A. L., Goncharov, V. N., Betti, R., Campbell, E. M., Knauer, J. P., Regan, S. P., Schmitt, A. J., Shah, R. C., and Shvydky, A. Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.123.065001.
Igumenshchev, I. V., Velikovich, A. L., Goncharov, V. N., Betti, R., Campbell, E. M., Knauer, J. P., Regan, S. P., Schmitt, A. J., Shah, R. C., & Shvydky, A. Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions. United States. doi:10.1103/PhysRevLett.123.065001.
Igumenshchev, I. V., Velikovich, A. L., Goncharov, V. N., Betti, R., Campbell, E. M., Knauer, J. P., Regan, S. P., Schmitt, A. J., Shah, R. C., and Shvydky, A. Tue . "Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions". United States. doi:10.1103/PhysRevLett.123.065001.
@article{osti_1560055,
title = {Rarefaction Flows and Mitigation of Imprint in Direct-Drive Implosions},
author = {Igumenshchev, I. V. and Velikovich, A. L. and Goncharov, V. N. and Betti, R. and Campbell, E. M. and Knauer, J. P. and Regan, S. P. and Schmitt, A. J. and Shah, R. C. and Shvydky, A.},
abstractNote = {Using highly resolved 3-D radiation-hydrodynamic simulations, we identify a novel mechanism by which the deleterious impact of laser imprinting is mitigated in direct-drive inertial confinement fusion. Unsupported shocks and associated rarefaction flows, commonly produced with short laser bursts, are found to reduce imprint modulations prior to target acceleration. Optimization through the choice of laser pulse with picket(s) and target dimensions may improve the stability of lower adiabat designs, thus providing the necessary margin for ignition-relevant implosions.},
doi = {10.1103/PhysRevLett.123.065001},
journal = {Physical Review Letters},
number = [6],
volume = [123],
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 6, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions
journal, September 2014

  • Peterson, J. L.; Clark, D. S.; Masse, L. P.
  • Physics of Plasmas, Vol. 21, Issue 9
  • DOI: 10.1063/1.4896708

Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells
journal, September 1990


Instability of a planar expansion wave
journal, October 2005


Instability of a plane centered rarefaction wave
journal, April 1996

  • Velikovich, Alexander; Phillips, Lee
  • Physics of Fluids, Vol. 8, Issue 4
  • DOI: 10.1063/1.868889

Phase conversion of lasers with low-loss distributed phase plates
conference, May 1993

  • Kessler, Terrance J.; Lin, Ying; Armstrong, J. Joseph
  • OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, SPIE Proceedings
  • DOI: 10.1117/12.154474

Imprint reduction using an intensity spike in OMEGA cryogenic targets
journal, January 2002

  • Collins, T. J. B.; Skupsky, S.
  • Physics of Plasmas, Vol. 9, Issue 1
  • DOI: 10.1063/1.1425840

Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression
journal, September 1984


Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility
journal, October 2016

  • Smalyuk, V. A.; Robey, H. F.; Döppner, T.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964919

On the Stability of Fluid Flows with Spherical Symmetry
journal, January 1954


Feedout and Richtmyer–Meshkov instability at large density difference
journal, February 2001

  • Velikovich, Alexander L.; Schmitt, Andrew J.; Gardner, John H.
  • Physics of Plasmas, Vol. 8, Issue 2
  • DOI: 10.1063/1.1335829

Time evolution of density perturbations in accelerating stratified fluids
journal, September 1983


Reduction of the ablative Rayleigh–Taylor growth rate with Gaussian picket pulses
journal, April 2004

  • Collins, T. J. B.; Knauer, J. P.; Betti, R.
  • Physics of Plasmas, Vol. 11, Issue 4
  • DOI: 10.1063/1.1649994

Laser imprint reduction with a short shaping laser pulse incident upon a foam-plastic target
journal, December 2002

  • Metzler, Nathan; Velikovich, Alexander L.; Schmitt, Andrew J.
  • Physics of Plasmas, Vol. 9, Issue 12
  • DOI: 10.1063/1.1517610

Two-dimensional model of thermal smoothing of laser imprint in a double-pulse plasma
journal, January 2000


Irradiation uniformity for high-compression laser-fusion experiments
journal, May 1999

  • Skupsky, S.; Craxton, R. S.
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873501

Initial performance results of the OMEGA laser system
journal, January 1997


Laser-induced adiabat shaping by relaxation in inertial fusion implosions
journal, January 2004

  • Anderson, K.; Betti, R.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1632903

Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
journal, January 2006

  • Goncharov, V. N.; Gotchev, O. V.; Vianello, E.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162803

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Reduction of early-time perturbation growth in ablatively driven laser targets using tailored density profiles
journal, August 1999

  • Metzler, Nathan; Velikovich, Alexander L.; Gardner, John H.
  • Physics of Plasmas, Vol. 6, Issue 8
  • DOI: 10.1063/1.873569

Small amplitude theory of Richtmyer–Meshkov instability
journal, May 1994

  • Yang, Yumin; Zhang, Qiang; Sharp, David H.
  • Physics of Fluids, Vol. 6, Issue 5
  • DOI: 10.1063/1.868245

Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser
journal, April 1999

  • Boehly, T. R.; Smalyuk, V. A.; Meyerhofer, D. D.
  • Journal of Applied Physics, Vol. 85, Issue 7
  • DOI: 10.1063/1.369702

Experimental evidence of thermal smoothing in a double-pulse produced plasma
journal, January 2000


Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


Propagation of a Rippled Shock Wave Driven by Nonuniform Laser Ablation
journal, March 1997


Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Observation of Strong Oscillations of Areal Mass in an Unsupported Shock Wave
journal, August 2012


Strong shock wave and areal mass oscillations associated with impulsive loading of planar laser targets
journal, August 2003

  • Velikovich, A. L.; Schmitt, A. J.; Metzler, N.
  • Physics of Plasmas, Vol. 10, Issue 8
  • DOI: 10.1063/1.1591769

Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket
journal, May 2003

  • Goncharov, V. N.; Knauer, J. P.; McKenty, P. W.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1562166

Model of hydrodynamic perturbation growth in the start-up phase of laser implosion
journal, September 1998


Three-dimensional hydrodynamic simulations of OMEGA implosions
journal, May 2017

  • Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4979195

National direct-drive program on OMEGA and the National Ignition Facility
journal, October 2016


Direct-drive laser fusion: Status and prospects
journal, May 1998

  • Bodner, Stephen E.; Colombant, Denis G.; Gardner, John H.
  • Physics of Plasmas, Vol. 5, Issue 5, p. 1901-1918
  • DOI: 10.1063/1.872861

A model of laser imprinting
journal, May 2000

  • Goncharov, V. N.; Skupsky, S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874028

Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA
journal, July 2016


Crossed-beam energy transfer in implosion experiments on OMEGA
journal, December 2010

  • Igumenshchev, I. V.; Edgell, D. H.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3532817

Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA
journal, May 2016

  • Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948418

Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation
journal, September 1997

  • Epstein, R.
  • Journal of Applied Physics, Vol. 82, Issue 5
  • DOI: 10.1063/1.366021

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- Z Dopants
journal, May 2012


Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
journal, November 1882


Imprint reduction in a plasma layer preformed with x-ray irradiation
journal, April 2002

  • Nishikino, M.; Shiraga, H.; Miyanaga, N.
  • Physics of Plasmas, Vol. 9, Issue 4
  • DOI: 10.1063/1.1455629

Theory of the Ablative Richtmyer-Meshkov Instability
journal, March 1999