DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Monte Carlo modeling of thin GaAs photocathodes

Abstract

A Monte Carlo model was developed to simulate electron transport and emission from thin GaAs photocathodes with different active layer thicknesses and dopant concentrations. The simulation accurately predicts expected behavior, namely, quantum efficiency (QE) is enhanced for thicker GaAs photocathodes and for higher dopant concentrations. More significantly, the simulation predicts that electrons excited to the conduction band of the GaAs can be reflected by the band bending regions of the AlGaAs barrier layer, which contributes to enhance QE. The simulation also predicts that electrons in the conduction band suffer more scattering for thicker GaAs photocathodes and for higher dopant concentration, leading to longer emission response time. This Monte Carlo model will improve our understanding and predicting of the performance of more complicated GaAs-based heterojunction structures composed of multiple thin layers.

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Brookhaven National Laboratory, Upton, New York 11973, USA
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP)
OSTI Identifier:
1560005
Alternate Identifier(s):
OSTI ID: 1567952
Report Number(s):
BNL-212028-2019-JAAM
Journal ID: ISSN 0021-8979; TRN: US2000443
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 126; Journal Issue: 7; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Liu, Wei, and Wang, Erdong. Monte Carlo modeling of thin GaAs photocathodes. United States: N. p., 2019. Web. doi:10.1063/1.5113804.
Liu, Wei, & Wang, Erdong. Monte Carlo modeling of thin GaAs photocathodes. United States. https://doi.org/10.1063/1.5113804
Liu, Wei, and Wang, Erdong. Mon . "Monte Carlo modeling of thin GaAs photocathodes". United States. https://doi.org/10.1063/1.5113804. https://www.osti.gov/servlets/purl/1560005.
@article{osti_1560005,
title = {Monte Carlo modeling of thin GaAs photocathodes},
author = {Liu, Wei and Wang, Erdong},
abstractNote = {A Monte Carlo model was developed to simulate electron transport and emission from thin GaAs photocathodes with different active layer thicknesses and dopant concentrations. The simulation accurately predicts expected behavior, namely, quantum efficiency (QE) is enhanced for thicker GaAs photocathodes and for higher dopant concentrations. More significantly, the simulation predicts that electrons excited to the conduction band of the GaAs can be reflected by the band bending regions of the AlGaAs barrier layer, which contributes to enhance QE. The simulation also predicts that electrons in the conduction band suffer more scattering for thicker GaAs photocathodes and for higher dopant concentration, leading to longer emission response time. This Monte Carlo model will improve our understanding and predicting of the performance of more complicated GaAs-based heterojunction structures composed of multiple thin layers.},
doi = {10.1063/1.5113804},
journal = {Journal of Applied Physics},
number = 7,
volume = 126,
place = {United States},
year = {Mon Aug 19 00:00:00 EDT 2019},
month = {Mon Aug 19 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Spin relaxation of photoelectrons in p -type gallium arsenide
journal, July 1977


Ultrabright and Ultrafast III–V Semiconductor Photocathodes
journal, March 2014


Refractive indices of III–V compounds: Key properties of InGaAsP relevant to device design
journal, August 1982

  • Adachi, Sadao
  • Journal of Applied Physics, Vol. 53, Issue 8
  • DOI: 10.1063/1.331425

Modern theory and applications of photocathodes
conference, October 1993

  • Spicer, William E.; Herrera-Gomez, Alberto
  • SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.158575

Semiconducting and other major properties of gallium arsenide
journal, October 1982

  • Blakemore, J. S.
  • Journal of Applied Physics, Vol. 53, Issue 10
  • DOI: 10.1063/1.331665

Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
journal, August 2015


Reducing the contribution of the photoemission process to the unwanted beam in photoelectron sources at accelerators
journal, September 2017

  • Dehn, M. A.; Aulenbacher, K.; Bechthold, V.
  • Applied Physics Letters, Vol. 111, Issue 13
  • DOI: 10.1063/1.4996977

Effects of atomic hydrogen and deuterium exposure on high polarization GaAs photocathodes
journal, December 2005

  • Baylac, M.; Adderley, P.; Brittian, J.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 8, Issue 12
  • DOI: 10.1103/PhysRevSTAB.8.123501

Pulse response of thin III/V semiconductor photocathodes
journal, December 2002

  • Aulenbacher, K.; Schuler, J.; Harrach, D. v.
  • Journal of Applied Physics, Vol. 92, Issue 12
  • DOI: 10.1063/1.1521526

Record high-average current from a high-brightness photoinjector
journal, January 2013

  • Dunham, Bruce; Barley, John; Bartnik, Adam
  • Applied Physics Letters, Vol. 102, Issue 3
  • DOI: 10.1063/1.4789395

Photoemissive, Photoconductive, and Optical Absorption Studies of Alkali-Antimony Compounds
journal, October 1958


Picosecond polarized electron bunches from a strained layer GaAsP photocathode
journal, September 1996

  • Hartmann, P.; Bermuth, J.; Hoffmann, J.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 379, Issue 1
  • DOI: 10.1016/0168-9002(96)00470-6

Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering
journal, February 1956


Photoelectron surface escape probability of (Ga,In)As : Cs–O in the 0.9 to [inverted lazy s] 1.6 μm range
journal, September 1972

  • Fisher, D. G.; Enstrom, R. E.; Escher, J. S.
  • Journal of Applied Physics, Vol. 43, Issue 9
  • DOI: 10.1063/1.1661817

A Monte Carlo study for minority‐electron transport in p ‐GaAs
journal, July 1990

  • Taniyama, Hideaki; Tomizawa, Masaaki; Furuta, Tomofumi
  • Journal of Applied Physics, Vol. 68, Issue 2
  • DOI: 10.1063/1.346789

Electron transverse energy distribution in GaAs negative electron affinity cathodes: Calculations compared to experiments
journal, August 1996

  • Vergara, G.; Herrera‐Gómez, A.; Spicer, W. E.
  • Journal of Applied Physics, Vol. 80, Issue 3
  • DOI: 10.1063/1.362992

Electron scattering by ionized impurities in semiconductors
journal, October 1981


Monte Carlo simulation of III-nitride photocathodes
journal, March 2018

  • Marini, Jonathan; Bell, L. D.; Shahedipour-Sandvik, F.
  • Journal of Applied Physics, Vol. 123, Issue 12
  • DOI: 10.1063/1.5022200

GaAs, AlAs, and Al x Ga 1− x As: Material parameters for use in research and device applications
journal, August 1985

  • Adachi, Sadao
  • Journal of Applied Physics, Vol. 58, Issue 3
  • DOI: 10.1063/1.336070

Gallium Arsenide detectors for X-ray and electron (beta particle) spectroscopy
journal, November 2016

  • Lioliou, G.; Barnett, A. M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 836
  • DOI: 10.1016/j.nima.2016.08.047

A diffusion model for picosecond electron bunches from negative electron affinity GaAs photocathodes
journal, August 1999

  • Hartmann, P.; Bermuth, J.; v. Harrach, D.
  • Journal of Applied Physics, Vol. 86, Issue 4
  • DOI: 10.1063/1.371037

A comprehensive evaluation of factors that influence the spin polarization of electrons emitted from bulk GaAs photocathodes
journal, July 2017

  • Liu, Wei; Poelker, Matt; Peng, Xincun
  • Journal of Applied Physics, Vol. 122, Issue 3
  • DOI: 10.1063/1.4994306

Thermal emittance and response time measurements of negative electron affinity photocathodes
journal, March 2008

  • Bazarov, Ivan V.; Dunham, Bruce M.; Li, Yulin
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2838209

Monte Carlo charge transport and photoemission from negative electron affinity GaAs photocathodes
journal, March 2013

  • Karkare, Siddharth; Dimitrov, Dimitre; Schaff, William
  • Journal of Applied Physics, Vol. 113, Issue 10
  • DOI: 10.1063/1.4794822

Photoemission characteristics of thin GaAs-based heterojunction photocathodes
journal, January 2015

  • Feng, Cheng; Zhang, Yijun; Qian, Yunsheng
  • Journal of Applied Physics, Vol. 117, Issue 2
  • DOI: 10.1063/1.4905621

A new teaching approach to quantum mechanical tunneling
journal, September 1999


Record-level quantum efficiency from a high polarization strained GaAs/GaAsP superlattice photocathode with distributed Bragg reflector
journal, December 2016

  • Liu, Wei; Chen, Yiqiao; Lu, Wentao
  • Applied Physics Letters, Vol. 109, Issue 25
  • DOI: 10.1063/1.4972180

Calculated electron energy distribution of negative electron affinity cathodes
journal, August 1999


Narrow cone emission from negative electron affinity photocathodes
journal, January 2005

  • Liu, Zhi; Sun, Yun; Pianetta, P.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 23, Issue 6
  • DOI: 10.1116/1.2101726

Transport and Deformation-Potential Theory for Many-Valley Semiconductors with Anisotropic Scattering
journal, March 1957


Electronic Structure and Optical Properties of Semiconductors
journal, February 1990

  • Cohen, Marvin L.; Chelikowsky, James R.; Herman, Frank
  • Physics Today, Vol. 43, Issue 2
  • DOI: 10.1063/1.2810461