DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families

Abstract

An automated computational thermochemistry protocol based on explicitly correlated coupled-cluster theory was determined to produce highly accurate enthalpies of formation and atomization energies for small- to medium-sized molecular species (3–12 atoms). Each possible source of error was carefully examined, and the sizes of contributions to the total atomization enthalpies were used to generate uncertainty estimates. The protocol was first used to generate total atomization enthalpies for a family of four molecular species exhibiting a variety of charges, multiplicities, and electronic ground states. The new protocol was demonstrated to be in good agreement with the Active Thermochemical Tables database for the four species: the methyl peroxy radical, methoxyoxoniumylidene (methyl peroxy cation), methyl peroxy anion, and methyl hydroperoxide. Updating the Active Thermochemical Tables to include those results yielded significantly improved accuracy for the formation enthalpies of those species. The derived protocol was then used to predict formation enthalpies for the larger ethyl peroxy family of species.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]
  1. Missouri Univ. of Science and Technology, Rolla, MO (United States)
  2. Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States); Univ. of Chicago, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1559535
Grant/Contract Number:  
AC02-06CH11357; SC0019740
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory
Additional Journal Information:
Journal Volume: 123; Journal Issue: 26; Journal ID: ISSN 1089-5639
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Active Thermochemical Tables; thermochemistry

Citation Formats

Welch, Bradley K., Dawes, Richard, Bross, David H., and Ruscic, Branko. An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families. United States: N. p., 2019. Web. doi:10.1021/acs.jpca.9b04381.
Welch, Bradley K., Dawes, Richard, Bross, David H., & Ruscic, Branko. An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families. United States. https://doi.org/10.1021/acs.jpca.9b04381
Welch, Bradley K., Dawes, Richard, Bross, David H., and Ruscic, Branko. Tue . "An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families". United States. https://doi.org/10.1021/acs.jpca.9b04381. https://www.osti.gov/servlets/purl/1559535.
@article{osti_1559535,
title = {An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families},
author = {Welch, Bradley K. and Dawes, Richard and Bross, David H. and Ruscic, Branko},
abstractNote = {An automated computational thermochemistry protocol based on explicitly correlated coupled-cluster theory was determined to produce highly accurate enthalpies of formation and atomization energies for small- to medium-sized molecular species (3–12 atoms). Each possible source of error was carefully examined, and the sizes of contributions to the total atomization enthalpies were used to generate uncertainty estimates. The protocol was first used to generate total atomization enthalpies for a family of four molecular species exhibiting a variety of charges, multiplicities, and electronic ground states. The new protocol was demonstrated to be in good agreement with the Active Thermochemical Tables database for the four species: the methyl peroxy radical, methoxyoxoniumylidene (methyl peroxy cation), methyl peroxy anion, and methyl hydroperoxide. Updating the Active Thermochemical Tables to include those results yielded significantly improved accuracy for the formation enthalpies of those species. The derived protocol was then used to predict formation enthalpies for the larger ethyl peroxy family of species.},
doi = {10.1021/acs.jpca.9b04381},
journal = {Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory},
number = 26,
volume = 123,
place = {United States},
year = {Tue Jun 04 00:00:00 EDT 2019},
month = {Tue Jun 04 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The reaction of methyl peroxy and hydroxyl radicals as a major source of atmospheric methanol
journal, October 2016

  • Müller, Jean-François; Liu, Zhen; Nguyen, Vinh Son
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13213

Exploring mechanisms of a tropospheric archetype: CH3O2 + NO
journal, December 2015

  • Launder, Andrew M.; Agarwal, Jay; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 143, Issue 23
  • DOI: 10.1063/1.4937381

Relatively Selective Production of the Simplest Criegee Intermediate in a CH 4 /O 2 Electric Discharge: Kinetic Analysis of a Plausible Mechanism
journal, November 2014

  • Nguyen, Thanh Lam; McCarthy, Michael C.; Stanton, John F.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 28
  • DOI: 10.1021/jp510554g

Photodissociation dynamics of the simplest alkyl peroxy radicals, CH 3 OO and C 2 H 5 OO, at 248 nm
journal, January 2018

  • Sullivan, Erin N.; Nichols, Bethan; Neumark, Daniel M.
  • The Journal of Chemical Physics, Vol. 148, Issue 4
  • DOI: 10.1063/1.5011985

Organic peroxy radicals: Kinetics, spectroscopy and tropospheric chemistry
journal, July 1992

  • Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.
  • Atmospheric Environment. Part A. General Topics, Vol. 26, Issue 10
  • DOI: 10.1016/0960-1686(92)90423-I

HEAT: High accuracy extrapolated ab initio thermochemistry
journal, December 2004

  • Tajti, Attila; Szalay, Péter G.; Császár, Attila G.
  • The Journal of Chemical Physics, Vol. 121, Issue 23
  • DOI: 10.1063/1.1811608

High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview
journal, March 2008

  • Harding, Michael E.; Vázquez, Juana; Ruscic, Branko
  • The Journal of Chemical Physics, Vol. 128, Issue 11
  • DOI: 10.1063/1.2835612

W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions
journal, October 2006

  • Karton, Amir; Rabinovich, Elena; Martin, Jan M. L.
  • The Journal of Chemical Physics, Vol. 125, Issue 14
  • DOI: 10.1063/1.2348881

Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges
journal, January 2012

  • Peterson, Kirk A.; Feller, David; Dixon, David A.
  • Theoretical Chemistry Accounts, Vol. 131, Issue 1
  • DOI: 10.1007/s00214-011-1079-5

Uncertainty quantification in thermochemistry, benchmarking electronic structure computations, and Active Thermochemical Tables
journal, January 2014

  • Ruscic, Branko
  • International Journal of Quantum Chemistry, Vol. 114, Issue 17
  • DOI: 10.1002/qua.24605

Towards highly accurate ab initio thermochemistry of larger systems: Benzene
journal, July 2011

  • Harding, Michael E.; Vázquez, Juana; Gauss, Jürgen
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3609250

W4-17: A diverse and high-confidence dataset of atomization energies for benchmarking high-level electronic structure methods
journal, July 2017

  • Karton, Amir; Sylvetsky, Nitai; Martin, Jan M. L.
  • Journal of Computational Chemistry, Vol. 38, Issue 24
  • DOI: 10.1002/jcc.24854

Moderate-Cost Ab Initio Thermochemistry with Chemical Accuracy
journal, August 2017

  • Ganyecz, Ádám; Kállay, Mihály; Csontos, József
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 9
  • DOI: 10.1021/acs.jctc.7b00607

W3X: A Cost-Effective Post-CCSD(T) Composite Procedure
journal, October 2013

  • Chan, Bun; Radom, Leo
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 11
  • DOI: 10.1021/ct4005323

Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species
journal, August 2017

  • Klippenstein, Stephen J.; Harding, Lawrence B.; Ruscic, Branko
  • The Journal of Physical Chemistry A, Vol. 121, Issue 35
  • DOI: 10.1021/acs.jpca.7b05945

W2X and W3X-L: Cost-Effective Approximations to W2 and W4 with kJ mol –1 Accuracy
journal, April 2015


High-accuracy extrapolated ab initio thermochemistry. IV. A modified recipe for computational efficiency
journal, June 2019

  • Thorpe, James H.; Lopez, Chris A.; Nguyen, Thanh Lam
  • The Journal of Chemical Physics, Vol. 150, Issue 22
  • DOI: 10.1063/1.5095937

Explicitly correlated W n theory: W1-F12 and W2-F12
journal, March 2012

  • Karton, Amir; Martin, Jan M. L.
  • The Journal of Chemical Physics, Vol. 136, Issue 12
  • DOI: 10.1063/1.3697678

Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?
journal, June 2016

  • Sylvetsky, Nitai; Peterson, Kirk A.; Karton, Amir
  • The Journal of Chemical Physics, Vol. 144, Issue 21
  • DOI: 10.1063/1.4952410

Introduction to Active Thermochemical Tables:  Several “Key” Enthalpies of Formation Revisited
journal, November 2004

  • Ruscic, Branko; Pinzon, Reinhardt E.; Morton, Melita L.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 45
  • DOI: 10.1021/jp047912y

Active Thermochemical Tables: thermochemistry for the 21st century
journal, January 2005

  • Ruscic, Branko; Pinzon, Reinhardt E.; Laszewski, Gregor von
  • Journal of Physics: Conference Series, Vol. 16
  • DOI: 10.1088/1742-6596/16/1/078

Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
journal, February 2008

  • Peterson, Kirk A.; Adler, Thomas B.; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2831537

Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: The atoms B–Ne and Al–Ar
journal, February 2010

  • Hill, J. Grant; Mazumder, Shivnath; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 132, Issue 5
  • DOI: 10.1063/1.3308483

The cc-pV5Z-F12 basis set: reaching the basis set limit in explicitly correlated calculations
journal, December 2014


A simple and efficient CCSD(T)-F12 approximation
journal, December 2007

  • Adler, Thomas B.; Knizia, Gerald; Werner, Hans-Joachim
  • The Journal of Chemical Physics, Vol. 127, Issue 22
  • DOI: 10.1063/1.2817618

General orbital invariant MP2-F12 theory
journal, April 2007

  • Werner, Hans-Joachim; Adler, Thomas B.; Manby, Frederick R.
  • The Journal of Chemical Physics, Vol. 126, Issue 16
  • DOI: 10.1063/1.2712434

Gaussian basis sets for use in correlated molecular calculations. V. Core‐valence basis sets for boron through neon
journal, September 1995

  • Woon, David E.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 103, Issue 11
  • DOI: 10.1063/1.470645

Approximate treatment of higher excitations in coupled-cluster theory
journal, December 2005

  • Kállay, Mihály; Gauss, Jürgen
  • The Journal of Chemical Physics, Vol. 123, Issue 21
  • DOI: 10.1063/1.2121589

Efficient calculation of potential energy surfaces for the generation of vibrational wave functions
journal, November 2004

  • Rauhut, Guntram
  • The Journal of Chemical Physics, Vol. 121, Issue 19
  • DOI: 10.1063/1.1804174

Accurate calculation of anharmonic vibrational frequencies of medium sized molecules using local coupled cluster methods
journal, April 2007

  • Hrenar, Tomica; Werner, Hans-Joachim; Rauhut, Guntram
  • The Journal of Chemical Physics, Vol. 126, Issue 13
  • DOI: 10.1063/1.2718951

Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations
journal, April 2015

  • Ramakrishnan, Raghunathan; Rauhut, Guntram
  • The Journal of Chemical Physics, Vol. 142, Issue 15
  • DOI: 10.1063/1.4918587

The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation
journal, March 2003

  • Valeev, Edward F.; Sherrill, C. David
  • The Journal of Chemical Physics, Vol. 118, Issue 9
  • DOI: 10.1063/1.1540626

Anharmonic zero point vibrational energies: Tipping the scales in accurate thermochemistry calculations?
journal, January 2013

  • Pfeiffer, Florian; Rauhut, Guntram; Feller, David
  • The Journal of Chemical Physics, Vol. 138, Issue 4
  • DOI: 10.1063/1.4777568

Anharmonic vibrational properties by a fully automated second-order perturbative approach
journal, January 2005

  • Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 122, Issue 1
  • DOI: 10.1063/1.1824881

Basis-set convergence of correlated calculations on water
journal, June 1997

  • Helgaker, Trygve; Klopper, Wim; Koch, Henrik
  • The Journal of Chemical Physics, Vol. 106, Issue 23
  • DOI: 10.1063/1.473863

On one-electron basis set extrapolation of atomic and molecular correlation energies
journal, October 2012


Ab initio total atomization energies of small molecules — towards the basis set limit
journal, September 1996


Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
journal, January 2009

  • Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald
  • The Journal of Chemical Physics, Vol. 131, Issue 19
  • DOI: 10.1063/1.3265857

Enthalpy of Formation of N 2 H 4 (Hydrazine) Revisited
journal, August 2017

  • Feller, David; Bross, David H.; Ruscic, Branko
  • The Journal of Physical Chemistry A, Vol. 121, Issue 32
  • DOI: 10.1021/acs.jpca.7b06017

Benchmark atomization energy of ethane: Importance of accurate zero-point vibrational energies and diagonal Born–Oppenheimer corrections for a ‘simple’ organic molecule
journal, June 2007


Kinetics of the Reaction of CH 3 O 2 Radicals with OH Studied over the 292–526 K Temperature Range
journal, July 2016

  • Yan, Chao; Kocevska, Stefani; Krasnoperov, Lev N.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpca.6b04213

Quantum mechanical studies of the CH 3 O 2 + HO 2 reaction
journal, October 2016


The Reaction between CH 3 O 2 and OH Radicals: Product Yields and Atmospheric Implications
journal, February 2017

  • Assaf, Emmanuel; Sheps, Leonid; Whalley, Lisa
  • Environmental Science & Technology, Vol. 51, Issue 4
  • DOI: 10.1021/acs.est.6b06265

Reaction between CH 3 O 2 and BrO Radicals: A New Source of Upper Troposphere Lower Stratosphere Hydroxyl Radicals
journal, November 2014

  • Shallcross, Dudley E.; Leather, Kimberley E.; Bacak, Asan
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp5108203

Radical Thermometers, Thermochemistry, and Photoelectron Spectra: A Photoelectron Photoion Coincidence Spectroscopy Study of the Methyl Peroxy Radical
journal, January 2018

  • Voronova, Krisztina; Ervin, Kent M.; Torma, Krisztián G.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 3
  • DOI: 10.1021/acs.jpclett.7b03145

Energy-Resolved Photoionization of Alkylperoxy Radicals and the Stability of Their Cations
journal, October 2006

  • Meloni, Giovanni; Zou, Peng; Klippenstein, Stephen J.
  • Journal of the American Chemical Society, Vol. 128, Issue 41
  • DOI: 10.1021/ja064556j

Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry
journal, May 2017


Database of Small Molecule Thermochemistry for Combustion
journal, August 2012

  • Goldsmith, C. Franklin; Magoon, Gregory R.; Green, William H.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 36
  • DOI: 10.1021/jp303819e

Kinetics of polyatomic free radicals produced by laser photolysis. 5. Study of the equilibrium methyl + oxygen .dblarw. CH3O2 between 421 and 538.degree.
journal, September 1985

  • Slagle, Irene R.; Gutman, David
  • Journal of the American Chemical Society, Vol. 107, Issue 19
  • DOI: 10.1021/ja00305a003

Thermochemistry of the R−O 2 Bond in Alkyl and Chloroalkyl Peroxy Radicals
journal, March 1998

  • Knyazev, Vadim D.; Slagle, Irene R.
  • The Journal of Physical Chemistry A, Vol. 102, Issue 10
  • DOI: 10.1021/jp9726091

Experimental determination of the equilibrium constant of the reaction CH3 + O2 ? CH3O2 during the gas-phase oxidation of methane
journal, November 1982

  • Khachatryan, L. A.; Niazyan, O. M.; Mantashyan, A. A.
  • International Journal of Chemical Kinetics, Vol. 14, Issue 11
  • DOI: 10.1002/kin.550141107

A neutralization-reionization mass spectrometric study of alkyl hydroperoxide cation radicals and four distinguishable [C,H3,O2]+ isomers
journal, April 1996

  • Schalley, Christoph A.; Schröder, Detlef; Schwarz, Helmut
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 153, Issue 2-3
  • DOI: 10.1016/0168-1176(96)04360-1

The atmospheric oxidation of CH 3 OOH by the OH radical: the effect of water vapor
journal, January 2017

  • Anglada, Josep M.; Crehuet, Ramon; Martins-Costa, Marilia
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 19
  • DOI: 10.1039/C7CP01976A

Accurate Anharmonic Zero-Point Energies for Some Combustion-Related Species from Diffusion Monte Carlo
journal, May 2017

  • Harding, Lawrence B.; Georgievskii, Yuri; Klippenstein, Stephen J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 22
  • DOI: 10.1021/acs.jpca.7b03082

Atmospheric hydroperoxides measured over a rural site in central Japan during spring: helicopter-borne measurements
journal, August 2017

  • Watanabe, Koichi; Yachi, Chinatsu; Song, Xiao Jing
  • Journal of Atmospheric Chemistry, Vol. 75, Issue 2
  • DOI: 10.1007/s10874-017-9368-6

Thermochemical Properties (Δ f H °(298 K), S °(298 K), C p ( T )) and Bond Dissociation Energies for C1–C4 Normal Hydroperoxides and Peroxy Radicals
journal, April 2016

  • Wang, Heng; Bozzelli, Joseph W.
  • Journal of Chemical & Engineering Data, Vol. 61, Issue 5
  • DOI: 10.1021/acs.jced.5b01035

Enthalpies of Formation and Bond Dissociation Energies of Lower Alkyl Hydroperoxides and Related Hydroperoxy and Alkoxy Radicals
journal, June 2008

  • Simmie, John M.; Black, Gráinne; Curran, Henry J.
  • The Journal of Physical Chemistry A, Vol. 112, Issue 22
  • DOI: 10.1021/jp711360z

Unimolecular dissociation and thermochemistry of CH3OOH
journal, June 2005

  • Matthews, Jamie; Sinha, Amitabha; Francisco, Joseph S.
  • The Journal of Chemical Physics, Vol. 122, Issue 22
  • DOI: 10.1063/1.1928228

Characterization and Activity of CH3OOH and CH3CH2OOH Study on a Photoelectron Spectroscopy
journal, August 2005

  • Yi-Min, Li; Qiao, Sun; Hai-Yang, Li
  • Chinese Journal of Chemistry, Vol. 23, Issue 8
  • DOI: 10.1002/cjoc.200590993

Critical evaluation of the potential energy surface of the CH 3 + HO 2 reaction system
journal, February 2015

  • Faragó, E. P.; Szőri, M.; Owen, M. C.
  • The Journal of Chemical Physics, Vol. 142, Issue 5
  • DOI: 10.1063/1.4907014

Validation of a Database of Formation Enthalpies and of Mid-Level Model Chemistries
journal, September 2016


Negative-Ion Photoelectron Spectroscopy, Gas-Phase Acidity, and Thermochemistry of the Peroxyl Radicals CH 3 OO and CH 3 CH 2 OO
journal, October 2001

  • Blanksby, Stephen J.; Ramond, Tanya M.; Davico, Gustavo E.
  • Journal of the American Chemical Society, Vol. 123, Issue 39
  • DOI: 10.1021/ja010942j

Infrared absorption of gaseous CH3OO detected with a step-scan Fourier-transform spectrometer
journal, December 2007

  • Huang, Deng-Ruei; Chu, Li-Kang; Lee, Yuan-Pern
  • The Journal of Chemical Physics, Vol. 127, Issue 23
  • DOI: 10.1063/1.2807241

A Fourier transform infrared study of the kinetics and mechanism for the reaction hydroxyl + methyl hydroperoxide
journal, June 1983

  • Niki, H.; Maker, P. D.; Savage, C. M.
  • The Journal of Physical Chemistry, Vol. 87, Issue 12
  • DOI: 10.1021/j100235a030

Note on heats of formation of ethyl and propyl peroxides
journal, January 1940

  • Stathis, E. C.; Egerton, A. C.
  • Transactions of the Faraday Society, Vol. 35
  • DOI: 10.1039/TF9403500606

Works referencing / citing this record:

An ab initio based full-dimensional potential energy surface for OH + O 2 ⇄ HO 3 and low-lying vibrational levels of HO 3
journal, January 2019

  • Hu, Xixi; Zuo, Junxiang; Xie, Changjian
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 25
  • DOI: 10.1039/c9cp02206f