skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 29, 2020

Title: Low-loss single-photon NbN microwave resonators on Si

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1];  [2]
  1. High Energy Physics Division, Argonne National Laboratory, Lemont, Illinois 60559, USA, Kavli Institute for Cosmological Physics, University of Chicago, Chicago Illinois 60637, USA
  2. Material Science Division, Argonne National Laboratory, Lemont, Illinois 60559, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1559373
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Name: Applied Physics Letters Journal Volume: 115 Journal Issue: 9; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Carter, Faustin W., Khaire, Trupti, Chang, Clarence, and Novosad, Valentyn. Low-loss single-photon NbN microwave resonators on Si. United States: N. p., 2019. Web. doi:10.1063/1.5115276.
Carter, Faustin W., Khaire, Trupti, Chang, Clarence, & Novosad, Valentyn. Low-loss single-photon NbN microwave resonators on Si. United States. doi:10.1063/1.5115276.
Carter, Faustin W., Khaire, Trupti, Chang, Clarence, and Novosad, Valentyn. Mon . "Low-loss single-photon NbN microwave resonators on Si". United States. doi:10.1063/1.5115276.
@article{osti_1559373,
title = {Low-loss single-photon NbN microwave resonators on Si},
author = {Carter, Faustin W. and Khaire, Trupti and Chang, Clarence and Novosad, Valentyn},
abstractNote = {},
doi = {10.1063/1.5115276},
journal = {Applied Physics Letters},
number = 9,
volume = 115,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 29, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Nano-structured superconducting single-photon detectors
journal, March 2004

  • Goltsman, G.; Korneev, A.; Izbenko, V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 520, Issue 1-3
  • DOI: 10.1016/j.nima.2003.11.305

Etch induced microwave losses in titanium nitride superconducting resonators
journal, June 2012

  • Sandberg, Martin; Vissers, Michael R.; Kline, Jeffrey S.
  • Applied Physics Letters, Vol. 100, Issue 26
  • DOI: 10.1063/1.4729623

Two-level states in glasses
journal, December 1987


Characterization and reduction of microfabrication-induced decoherence in superconducting quantum circuits
journal, August 2014

  • Quintana, C. M.; Megrant, A.; Chen, Z.
  • Applied Physics Letters, Vol. 105, Issue 6
  • DOI: 10.1063/1.4893297

Improving the coherence time of superconducting coplanar resonators
journal, December 2009

  • Wang, H.; Hofheinz, M.; Wenner, J.
  • Applied Physics Letters, Vol. 95, Issue 23
  • DOI: 10.1063/1.3273372

Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators
journal, April 2008

  • Gao, Jiansong; Daal, Miguel; Vayonakis, Anastasios
  • Applied Physics Letters, Vol. 92, Issue 15
  • DOI: 10.1063/1.2906373

NbN-Based Microwave Kinetic Inductance Detector with a Rewound Spiral Resonator for Broadband Terahertz Detection
journal, June 2013

  • Ariyoshi, Seiichiro; Nakajima, Kensuke; Saito, Atsushi
  • Applied Physics Express, Vol. 6, Issue 6
  • DOI: 10.7567/APEX.6.064103

Study of loss in superconducting coplanar waveguide resonators
journal, March 2011

  • Sage, Jeremy M.; Bolkhovsky, Vladimir; Oliver, William D.
  • Journal of Applied Physics, Vol. 109, Issue 6
  • DOI: 10.1063/1.3552890

Minimal resonator loss for circuit quantum electrodynamics
journal, July 2010

  • Barends, R.; Vercruyssen, N.; Endo, A.
  • Applied Physics Letters, Vol. 97, Issue 2
  • DOI: 10.1063/1.3458705

Intermodulation gain in nonlinear NbN superconducting microwave resonators
journal, January 2006

  • Abdo, Baleegh; Segev, Eran; Shtempluck, Oleg
  • Applied Physics Letters, Vol. 88, Issue 2
  • DOI: 10.1063/1.2164925

Two Level System Loss in Superconducting Microwave Resonators
journal, June 2011

  • Pappas, David P.; Vissers, Michael R.; Wisbey, David S.
  • IEEE Transactions on Applied Superconductivity, Vol. 21, Issue 3
  • DOI: 10.1109/TASC.2010.2097578

An analysis method for asymmetric resonator transmission applied to superconducting devices
journal, March 2012

  • Khalil, M. S.; Stoutimore, M. J. A.; Wellstood, F. C.
  • Journal of Applied Physics, Vol. 111, Issue 5
  • DOI: 10.1063/1.3692073

Tunable superconducting microstrip resonators
journal, April 2016

  • Adamyan, A. A.; Kubatkin, S. E.; Danilov, A. V.
  • Applied Physics Letters, Vol. 108, Issue 17
  • DOI: 10.1063/1.4947579

Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line
journal, February 2016

  • Adamyan, A. A.; de Graaf, S. E.; Kubatkin, S. E.
  • Journal of Applied Physics, Vol. 119, Issue 8
  • DOI: 10.1063/1.4942362

Characterizing Quality Factor of Niobium Resonators Using a Markov Chain Monte Carlo Approach
journal, June 2017

  • Basu Thakur, Ritoban; Tang, Qing Yang; McGeehan, Ryan
  • IEEE Transactions on Applied Superconductivity, Vol. 27, Issue 4
  • DOI: 10.1109/TASC.2016.2642834

Terahertz Superconducting Hot Electron Bolometer Heterodyne Receivers
journal, June 2007

  • Gao, J. R.; Hajenius, M. .; Yang, Z. Q.
  • IEEE Transactions on Applied Superconductivity, Vol. 17, Issue 2
  • DOI: 10.1109/TASC.2007.898066

Bias sputtered NbN and superconducting nanowire devices
journal, September 2017

  • Dane, Andrew E.; McCaughan, Adam N.; Zhu, Di
  • Applied Physics Letters, Vol. 111, Issue 12
  • DOI: 10.1063/1.4990066

Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam
journal, July 2017


Theory of the Anomalous Skin Effect in Normal and Superconducting Metals
journal, July 1958


In situ measurement of the permittivity of helium using microwave NbN resonators
journal, September 2008

  • Grabovskij, G. J.; Swenson, L. J.; Buisson, O.
  • Applied Physics Letters, Vol. 93, Issue 13
  • DOI: 10.1063/1.2996263

Design and Fabrication of Microwave Kinetic Inductance Detectors using NbN Symmetric Spiral Resonator Array
journal, May 2014


Loss mechanisms in superconducting thin film microwave resonators
journal, January 2016

  • Goetz, Jan; Deppe, Frank; Haeberlein, Max
  • Journal of Applied Physics, Vol. 119, Issue 1
  • DOI: 10.1063/1.4939299

Surface loss simulations of superconducting coplanar waveguide resonators
journal, September 2011

  • Wenner, J.; Barends, R.; Bialczak, R. C.
  • Applied Physics Letters, Vol. 99, Issue 11
  • DOI: 10.1063/1.3637047

scraps: An Open-Source Python-Based Analysis Package for Analyzing and Plotting Superconducting Resonator Data
journal, June 2017

  • Carter, Faustin Wirkus; Khaire, Trupti S.; Novosad, Valentyn
  • IEEE Transactions on Applied Superconductivity, Vol. 27, Issue 4
  • DOI: 10.1109/TASC.2016.2625767

Terahertz response of NbN-based microwave kinetic inductance detectors with rewound spiral resonator
journal, February 2016


Energy gap measurement of niobium nitride
journal, December 1968