DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies

Abstract

A versatile and highly tunable synthesis for nanofiber aerogels based on the n-type organic semiconductor perylene tetracarboxylic diimide (PTCDI) is presented. PTCDI nanofiber aerogels are demonstrated to incorporate the organic semiconductor into a high surface area and porous morphology, and can also be graphitized to synthesize carbon nanofiber (CNF) aerogels by thermal annealing. Using this approach, CNF aerogels with variable density and crystallinity are synthesized. Furthermore, by incorporating metal salts into the synthesis, metal-directed assembly yields a variety of nanoscale morphologies. The selection of post-synthesis thermal treatment can result in metal-directed assembly of PTCDI aerogels, low crystallinity graphitic aerogels decorated with metal nanoparticles, or highly crystalline graphitic aerogels with controllable nanoscale morphologies. The high surface area and porosity afforded by the aerogel morphology coupled with the intrinsic properties of PTCDI or CNFs is important for improving their performance in a number of applications including energy storage and catalysis.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [4];  [5];  [5];  [6];  [7]
  1. University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States)
  2. University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry; Kavli Energy NanoScience Institute, Berkeley, CA (United States)
  3. University of California, Berkeley, CA (United States); Kavli Energy NanoScience Institute, Berkeley, CA (United States)
  4. University of California, Berkeley, CA (United States)
  5. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry
  6. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
  7. University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Materials Science Division; Kavli Energy NanoScience Institute, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1559260
Alternate Identifier(s):
OSTI ID: 1545387; OSTI ID: 2229594
Report Number(s):
LLNL-JRNL-843433
Journal ID: ISSN 0008-6223; ark:/13030/qt5655m7tw
Grant/Contract Number:  
AC02-05CH11231; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Carbon
Additional Journal Information:
Journal Volume: 153; Journal Issue: C; Journal ID: ISSN 0008-6223
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; Aerogel; Carbon nanofiber; Organic semiconductor; PTCDI; Self-assembly; Metal-directed assembly

Citation Formats

Turner, Sally, Shevitski, Brian, Long, Hu, Lorenzo, Maydelle, Marquez, James, Aloni, Shaul, Altoe, Virginia, Worsley, Marcus A., and Zettl, Alex. Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies. United States: N. p., 2019. Web. doi:10.1016/j.carbon.2019.07.039.
Turner, Sally, Shevitski, Brian, Long, Hu, Lorenzo, Maydelle, Marquez, James, Aloni, Shaul, Altoe, Virginia, Worsley, Marcus A., & Zettl, Alex. Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies. United States. https://doi.org/10.1016/j.carbon.2019.07.039
Turner, Sally, Shevitski, Brian, Long, Hu, Lorenzo, Maydelle, Marquez, James, Aloni, Shaul, Altoe, Virginia, Worsley, Marcus A., and Zettl, Alex. Fri . "Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies". United States. https://doi.org/10.1016/j.carbon.2019.07.039. https://www.osti.gov/servlets/purl/1559260.
@article{osti_1559260,
title = {Self-assembly and metal-directed assembly of organic semiconductor aerogels and conductive carbon nanofiber aerogels with controllable nanoscale morphologies},
author = {Turner, Sally and Shevitski, Brian and Long, Hu and Lorenzo, Maydelle and Marquez, James and Aloni, Shaul and Altoe, Virginia and Worsley, Marcus A. and Zettl, Alex},
abstractNote = {A versatile and highly tunable synthesis for nanofiber aerogels based on the n-type organic semiconductor perylene tetracarboxylic diimide (PTCDI) is presented. PTCDI nanofiber aerogels are demonstrated to incorporate the organic semiconductor into a high surface area and porous morphology, and can also be graphitized to synthesize carbon nanofiber (CNF) aerogels by thermal annealing. Using this approach, CNF aerogels with variable density and crystallinity are synthesized. Furthermore, by incorporating metal salts into the synthesis, metal-directed assembly yields a variety of nanoscale morphologies. The selection of post-synthesis thermal treatment can result in metal-directed assembly of PTCDI aerogels, low crystallinity graphitic aerogels decorated with metal nanoparticles, or highly crystalline graphitic aerogels with controllable nanoscale morphologies. The high surface area and porosity afforded by the aerogel morphology coupled with the intrinsic properties of PTCDI or CNFs is important for improving their performance in a number of applications including energy storage and catalysis.},
doi = {10.1016/j.carbon.2019.07.039},
journal = {Carbon},
number = C,
volume = 153,
place = {United States},
year = {Fri Nov 01 00:00:00 EDT 2019},
month = {Fri Nov 01 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ultrasensitive and Highly Selective Gas Sensors Based on Electrospun SnO2 Nanofibers Modified by Pd Loading
journal, September 2010

  • Yang, Dae-Jin; Kamienchick, Itai; Youn, Doo Young
  • Advanced Functional Materials, Vol. 20, Issue 24
  • DOI: 10.1002/adfm.201001251

Self-Assembled Chiral Nanofibers from Ultrathin Low-Dimensional Nanomaterials
journal, January 2015

  • Tan, Chaoliang; Qi, Xiaoying; Liu, Zhengdong
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja511471b

Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor
journal, July 2006


Self-Assembled Nanowires of Organic n-Type Semiconductor for Nonvolatile Transistor Memory Devices
journal, June 2012

  • Chou, Ying-Hsuan; Lee, Wen-Ya; Chen, Wen-Chang
  • Advanced Functional Materials, Vol. 22, Issue 20
  • DOI: 10.1002/adfm.201200706

Optically Active 1D MoS 2 Nanobelts
journal, February 2018

  • Murthy, Akshay A.; Li, Yuan; Palacios, Edgar
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 8
  • DOI: 10.1021/acsami.7b16892

Ultrafine TiO2 nanofibers for photocatalysis
journal, January 2013

  • Chacko, Daya K.; Madhavan, Asha Anish; Arun, T. A.
  • RSC Advances, Vol. 3, Issue 47
  • DOI: 10.1039/c3ra43716g

Direct Growth of MoS2 Nanowalls on Carbon Nanofibers for Use in Supercapacitor
journal, July 2017


Thin-Wall Assembled SnO 2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes
journal, December 2012

  • Shin, Jungwoo; Choi, Seon-Jin; Lee, Inkun
  • Advanced Functional Materials, Vol. 23, Issue 19
  • DOI: 10.1002/adfm.201202729

Synthesis and characterisation of nanofibrillar cellulose aerogels
journal, August 2007


Tuning the Charge-Transport Parameters of Perylene Diimide Single Crystals via End and/or Core Functionalization: A Density Functional Theory Investigation
journal, March 2010

  • Delgado, M. Carmen Ruiz; Kim, Eung-Gun; Filho, Demétrio A. da Silva
  • Journal of the American Chemical Society, Vol. 132, Issue 10
  • DOI: 10.1021/ja908173x

Nanobelt Self-Assembly from an Organic n-Type Semiconductor:  Propoxyethyl-PTCDI
journal, August 2005

  • Balakrishnan, Kaushik; Datar, Aniket; Oitker, Randy
  • Journal of the American Chemical Society, Vol. 127, Issue 30
  • DOI: 10.1021/ja052940v

Electrical Transport through Single Nanowires of Dialkyl Perylene Diimide
journal, May 2013

  • Kim, Beom Joon; Yu, Hojeong; Oh, Joon Hak
  • The Journal of Physical Chemistry C, Vol. 117, Issue 20
  • DOI: 10.1021/jp400807t

Interfacial Donor–Acceptor Engineering of Nanofiber Materials To Achieve Photoconductivity and Applications
journal, September 2015


Thermoactivated Electrical Conductivity in Perylene Diimide Nanofiber Materials
journal, December 2016


Structure control and photocatalytic performance of porous conjugated polymers based on perylene diimide
journal, January 2016


Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries
journal, April 2017

  • Schon, Tyler B.; Tilley, Andrew J.; Kynaston, Emily L.
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 18
  • DOI: 10.1021/acsami.7b02336

A nanomesh scaffold for supramolecular nanowire optoelectronic devices
journal, July 2016

  • Zhang, Lei; Zhong, Xiaolan; Pavlica, Egon
  • Nature Nanotechnology, Vol. 11, Issue 10
  • DOI: 10.1038/nnano.2016.125

Nitrogen-enriched electrospun porous carbon nanofiber networks as high-performance free-standing electrode materials
journal, January 2014

  • Nan, Ding; Huang, Zheng-Hong; Lv, Ruitao
  • J. Mater. Chem. A, Vol. 2, Issue 46
  • DOI: 10.1039/C4TA03868A

Carbon nanofiber supercapacitors with large areal capacitances
journal, December 2009

  • McDonough, James R.; Choi, Jang Wook; Yang, Yuan
  • Applied Physics Letters, Vol. 95, Issue 24
  • DOI: 10.1063/1.3273864

Optimizing the synthesis of carbon nanofiber based electrocatalysts for fuel cells
journal, March 2013


Strongly coupled carbon nanofiber–metal oxide coaxial nanocables with enhanced lithium storage properties
journal, January 2014

  • Zhang, Genqiang; Wu, Hao Bin; Hoster, Harry E.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE43123A

Ultracompressible, High-Rate Supercapacitors from Graphene-Coated Carbon Nanotube Aerogels
journal, February 2015

  • Wilson, Evan; Islam, Mohammad F.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 9
  • DOI: 10.1021/acsami.5b01384

Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction
journal, February 2015

  • Gong, Yongji; Fei, Huilong; Zou, Xiaolong
  • Chemistry of Materials, Vol. 27, Issue 4
  • DOI: 10.1021/cm5037502

Co–N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid
journal, March 2016

  • Fu, Xiaogang; Choi, Ja-Yeon; Zamani, Pouyan
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 10
  • DOI: 10.1021/acsami.5b12746

Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification
journal, January 2012

  • Sui, Zhuyin; Meng, Qinghan; Zhang, Xuetong
  • Journal of Materials Chemistry, Vol. 22, Issue 18
  • DOI: 10.1039/c2jm00055e

Thermal and electrical conductivity of monolithic carbon aerogels
journal, January 1993

  • Lu, Xianping; Nilsson, Ove; Fricke, Jochen
  • Journal of Applied Physics, Vol. 73, Issue 2, p. 581-584
  • DOI: 10.1063/1.353367

Organic aerogels from the polycondensation of resorcinol with formaldehyde
journal, September 1989


Advances in Tailoring Resorcinol-Formaldehyde Organic and Carbon Gels
journal, May 2011

  • ElKhatat, Ahmed M.; Al-Muhtaseb, Shaheen A.
  • Advanced Materials, Vol. 23, Issue 26
  • DOI: 10.1002/adma.201100283

Synthesis of Graphene Aerogel with High Electrical Conductivity
journal, October 2010

  • Worsley, Marcus A.; Pauzauskie, Peter J.; Olson, Tammy Y.
  • Journal of the American Chemical Society, Vol. 132, Issue 40, p. 14067-14069
  • DOI: 10.1021/ja1072299

Superelastic Hard Carbon Nanofiber Aerogels
journal, March 2019


Wood-Derived Ultrathin Carbon Nanofiber Aerogels
journal, May 2018

  • Li, Si-Cheng; Hu, Bi-Cheng; Ding, Yan-Wei
  • Angewandte Chemie International Edition, Vol. 57, Issue 24
  • DOI: 10.1002/anie.201802753

Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries
journal, January 2014

  • Wang, Liping; Schütz, Christina; Salazar-Alvarez, German
  • RSC Advances, Vol. 4, Issue 34
  • DOI: 10.1039/c3ra47853j

Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials
journal, January 2015

  • Liu, Xia; Roberts, Aled; Ahmed, Adham
  • Journal of Materials Chemistry A, Vol. 3, Issue 30
  • DOI: 10.1039/C5TA03546E

A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries
journal, September 2015

  • Deng, Wenwen; Shen, Yifei; Qian, Jiangfeng
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 38
  • DOI: 10.1021/acsami.5b04325

Porous Semiconductor Chalcogenide Aerogels
journal, January 2005

  • Mohanan, Jaya L.; Arachchige, Indika U.; Brock, Stephanie L.
  • Science, Vol. 307, Issue 5708
  • DOI: 10.1126/science.1104226

Density Tunable Graphene Aerogels Using a Sacrificial Polycyclic Aromatic Hydrocarbon
journal, August 2017

  • Turner, Sally; Long, Hu; Shevitski, Brian
  • physica status solidi (b), Vol. 254, Issue 11
  • DOI: 10.1002/pssb.201700203

KOH activation of carbon nanofibers
journal, January 2004


Carbon dioxide activated carbon nanofibers with hierarchical micro-/mesoporosity towards electrocatalytic oxygen reduction
journal, January 2016

  • Chen, Yongfang; Liu, Qian; Wang, Jiacheng
  • J. Mater. Chem. A, Vol. 4, Issue 15
  • DOI: 10.1039/C6TA00136J

Raman Spectrum of Graphene and Graphene Layers
journal, October 2006


The Scherrer equation versus the 'Debye-Scherrer equation'
journal, August 2011


Electrical and spectroscopic investigations on the reduction mechanism of graphene oxide
journal, April 2013


Carbon nano-rod as a structural unit of carbon nanofibers
journal, January 2004


Making graphene on a large scale
journal, April 2009


Defect Engineering and Surface Functionalization of Nanocarbons for Metal‐Free Catalysis
journal, January 2019

  • Ortiz‐Medina, Josue; Wang, Zhipeng; Cruz‐Silva, Rodolfo
  • Advanced Materials, Vol. 31, Issue 13
  • DOI: 10.1002/adma.201805717

Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity
journal, October 2015


Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars
journal, December 2011

  • Gao, Hanwei; Liu, Chong; Jeong, Hoon Eui
  • ACS Nano, Vol. 6, Issue 1
  • DOI: 10.1021/nn203457a

Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell Nanostructures
journal, January 2013

  • Sheehan, Stafford W.; Noh, Heeso; Brudvig, Gary W.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 2
  • DOI: 10.1021/jp311881k

Electrospun Palladium Nanoparticle-Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH
journal, February 2008

  • Huang, Jianshe; Wang, Dawei; Hou, Haoqing
  • Advanced Functional Materials, Vol. 18, Issue 3
  • DOI: 10.1002/adfm.200700729