DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive

Abstract

Here, the influence of kinetic electrons on the isotope scaling of gyrokinetic turbulent energy flux is assessed. A simple framework is used to study the transition from ion-dominated turbulence regimes to regimes where electron and ion transport levels are comparable. In the ion-dominated regime, the turbulent ion energy flux increases as the ion mass increases, in agreement with simple gyroBohm scaling arguments. Conversely, in the latter regime for which the influence of electrons is significant, a strong reversal from the gyroBohm scaling is observed which cannot be captured by mixing length estimates. In this reversed regime, the turbulent ion energy flux decreases as ion mass increases. The reversal is controlled by finite electron-to-ion mass-ratio dependence of the nonadiabatic electron response. This mass-ratio dependence is dominated by the parallel motion terms in the electron gyrokinetic equation, and provides a correction to the bounce-averaged electron limit which is independent of mass ratio. The finite-mass correction is larger for light ions and explains the observed gyroBohm reversal for hydrogen plasmas. Lastly, an implication is that isotope scaling may not be properly described by simplified fluid or bounce-averaged electron equations.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
General Atomics, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
1559134
Grant/Contract Number:  
FC02-04ER54698; FG02-95ER54309; FC02-06ER54873; SC0017992
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 26; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Belli, E. A., Candy, J., and Waltz, R. E. Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive. United States: N. p., 2019. Web. doi:10.1063/1.5110401.
Belli, E. A., Candy, J., & Waltz, R. E. Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive. United States. https://doi.org/10.1063/1.5110401
Belli, E. A., Candy, J., and Waltz, R. E. Tue . "Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive". United States. https://doi.org/10.1063/1.5110401. https://www.osti.gov/servlets/purl/1559134.
@article{osti_1559134,
title = {Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive},
author = {Belli, E. A. and Candy, J. and Waltz, R. E.},
abstractNote = {Here, the influence of kinetic electrons on the isotope scaling of gyrokinetic turbulent energy flux is assessed. A simple framework is used to study the transition from ion-dominated turbulence regimes to regimes where electron and ion transport levels are comparable. In the ion-dominated regime, the turbulent ion energy flux increases as the ion mass increases, in agreement with simple gyroBohm scaling arguments. Conversely, in the latter regime for which the influence of electrons is significant, a strong reversal from the gyroBohm scaling is observed which cannot be captured by mixing length estimates. In this reversed regime, the turbulent ion energy flux decreases as ion mass increases. The reversal is controlled by finite electron-to-ion mass-ratio dependence of the nonadiabatic electron response. This mass-ratio dependence is dominated by the parallel motion terms in the electron gyrokinetic equation, and provides a correction to the bounce-averaged electron limit which is independent of mass ratio. The finite-mass correction is larger for light ions and explains the observed gyroBohm reversal for hydrogen plasmas. Lastly, an implication is that isotope scaling may not be properly described by simplified fluid or bounce-averaged electron equations.},
doi = {10.1063/1.5110401},
journal = {Physics of Plasmas},
number = 8,
volume = 26,
place = {United States},
year = {Tue Aug 13 00:00:00 EDT 2019},
month = {Tue Aug 13 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: (a) Real frequency and (b) linear growth rate versus density gradient scale length comparing hydrogen, deuterium, and tritium as the main ion species. Note that the normalization is with respect to the main ion sound speed. The deviation from the intrinsic mass scaling increases as the density gradientmore » increases.« less

Save / Share:

Works referenced in this record:

Dependence of L mode confinement on plasma ion species in JET
journal, September 1993


Isotope Effects on Trapped-Electron-Mode Driven Turbulence and Zonal Flows in Helical and Tokamak Plasmas
journal, April 2017


Collisionality dependence of density peaking in quasilinear gyrokinetic calculations
journal, November 2005

  • Angioni, C.; Peeters, A. G.; Jenko, F.
  • Physics of Plasmas, Vol. 12, Issue 11
  • DOI: 10.1063/1.2135283

Linearized model collision operators for multiple ion species plasmas and gyrokinetic entropy balance equations
journal, November 2009

  • Sugama, H.; Watanabe, T. -H.; Nunami, M.
  • Physics of Plasmas, Vol. 16, Issue 11
  • DOI: 10.1063/1.3257907

An Eulerian gyrokinetic-Maxwell solver
journal, April 2003


Isotope scaling and η i mode with impurities in tokamak plasmas
journal, November 1994

  • Dong, J. Q.; Horton, W.; Dorland, W.
  • Physics of Plasmas, Vol. 1, Issue 11
  • DOI: 10.1063/1.870942

Implications of advanced collision operators for gyrokinetic simulation
journal, February 2017


Isotope effects on L-H threshold and confinement in tokamak plasmas
journal, November 2017

  • Maggi, C. F.; Weisen, H.; Hillesheim, J. C.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 1
  • DOI: 10.1088/1361-6587/aa9901

Toroidal semicollisional microinstabilities and anomalous electron and ion transport
journal, April 1990

  • Romanelli, F.; Briguglio, S.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 4
  • DOI: 10.1063/1.859313

Bounce averaged trapped electron fluid equations for plasma turbulence
journal, November 1996

  • Beer, M. A.; Hammett, G. W.
  • Physics of Plasmas, Vol. 3, Issue 11
  • DOI: 10.1063/1.871574

Isotopic scaling of confinement in deuterium–tritium plasmas
journal, June 1995

  • Scott, S. D.; Zarnstorff, M. C.; Barnes, Cris W.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871253

Theory of the ubiquitous mode
journal, October 1977


Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas
journal, March 2016


Integration of full divertor detachment with improved core confinement for tokamak fusion plasmas
journal, March 2021


Hydrogen isotope effects on ITG scale length, pedestal and confinement in JT-60 H-mode plasmas
journal, July 2013


Deuterium–tritium high confinement (H‐mode) studies in the Tokamak Fusion Test Reactor
journal, June 1995

  • Bush, C. E.; Sabbagh, S. A.; Zweben, S. J.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871490

A fluid–kinetic hybrid electron model for electromagnetic simulations
journal, May 2001


A high-accuracy Eulerian gyrokinetic solver for collisional plasmas
journal, November 2016


Critical gradient formula for toroidal electron temperature gradient modes
journal, September 2001

  • Jenko, F.; Dorland, W.; Hammett, G. W.
  • Physics of Plasmas, Vol. 8, Issue 9
  • DOI: 10.1063/1.1391261

Progress towards a predictive model for pedestal height in DIII-D
journal, July 2009


Gyro-Landau fluid equations for trapped and passing particles
journal, October 2005

  • Staebler, G. M.; Kinsey, J. E.; Waltz, R. E.
  • Physics of Plasmas, Vol. 12, Issue 10
  • DOI: 10.1063/1.2044587

Diffusive particle and heat pinch effects in toroidal plasmas
journal, October 1989


Density gradient driven microinstabilities and turbulence in ASDEX Upgrade pellet fuelled plasmas
journal, August 2017


Gyrokinetic simulations of ion and impurity transport
journal, February 2005

  • Estrada-Mila, C.; Candy, J.; Waltz, R. E.
  • Physics of Plasmas, Vol. 12, Issue 2
  • DOI: 10.1063/1.1848544

Reduced equations for electromagnetic turbulence in tokamaks
journal, January 2003

  • Hinton, F. L.; Rosenbluth, M. N.; Waltz, R. E.
  • Physics of Plasmas, Vol. 10, Issue 1
  • DOI: 10.1063/1.1524630

Dynamics of axisymmetric and poloidal flows in tokamaks
journal, January 1999


Chapter 2: Plasma confinement and transport
journal, December 1999

  • Transport, ITER Physics Expert Group on Confin; Database, ITER Physics Expert Group on Confin; Editors, ITER Physics Basis
  • Nuclear Fusion, Vol. 39, Issue 12
  • DOI: 10.1088/0029-5515/39/12/302

Microturbulence study of the isotope effect
journal, January 2015

  • Bustos, A.; Bañón Navarro, A.; Görler, T.
  • Physics of Plasmas, Vol. 22, Issue 1
  • DOI: 10.1063/1.4905637

A nonlinear bounce‐kinetic equation for trapped electrons
journal, December 1990

  • Gang, F. Y.; Diamond, P. H.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 12
  • DOI: 10.1063/1.859363

The isotope effect in ASDEX
journal, August 1993


Gyrokinetic nonlinear isotope effects in tokamak plasmas
journal, December 2016


Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code
journal, May 2017

  • Hager, Robert; Lang, Jianying; Chang, C. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983320

Noncircular, finite aspect ratio, local equilibrium model
journal, April 1998

  • Miller, R. L.; Chu, M. S.; Greene, J. M.
  • Physics of Plasmas, Vol. 5, Issue 4
  • DOI: 10.1063/1.872666

Spectral treatment of gyrokinetic shear flow
journal, March 2018


A gyro-Landau-fluid transport model
journal, July 1997

  • Waltz, R. E.; Staebler, G. M.; Dorland, W.
  • Physics of Plasmas, Vol. 4, Issue 7
  • DOI: 10.1063/1.872228

Plasma confinement in JET H mode plasmas with H, D, DT and T isotopes
journal, March 1999


Isotope and fast ions turbulence suppression effects: Consequences for high-β ITER plasmas
journal, May 2018

  • Garcia, J.; Görler, T.; Jenko, F.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5016331

Isotope mass and charge effects in tokamak plasmas
journal, December 2011

  • Pusztai, I.; Candy, J.; Gohil, P.
  • Physics of Plasmas, Vol. 18, Issue 12
  • DOI: 10.1063/1.3663844

A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations
journal, February 2001

  • Chen, Yang; Parker, Scott
  • Physics of Plasmas, Vol. 8, Issue 2
  • DOI: 10.1063/1.1335584

Works referencing / citing this record:

Isotope and plasma size scaling in ion temperature gradient driven turbulence
journal, December 2019