skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 1, 2020

Title: Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes

Abstract

The interfacial region where ion-transporting polymer chains are anchored to a hard, insulating phase is a major factor dictating the limits of ion-conduction in nanostructure-forming electrolytes. In this work, we investigate the effect of an end-grafted poly(ethylene oxide) (20 kg mol –1) surface on the ionic conductivity σ of PEO and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt mixtures. Specifically, we characterize nanothin films in the range of ca. 10 to 250 nm, which amplify the contributions from the polymer/substrate interface that dictate any deviations from expected bulk conductivity σ bulk values. Conductivity measurements reveal a monotonic decrease in σ upon decreasing film thickness at all values of r ( r = molar ratio of Li + to EO units). The reduction from bulk-like σ occurs for film thicknesses approximately 100 nm and below for all values of r. This trend in conductivity arises from the presence of the underlying grafted-PEO layer. Through a thickness dependence normalized conductivity study, we observe nanoscale constraints leading to deviation from intrinsic conductivity of bulk PEO–LiTFSI electrolytes. Here, these nanoscale constraints correspond to an immobile interfacial zone whose thickness h int ranges from 9.5 ± 1.4 nm at r = 0.01 to 2.9 ± 1.5 nm atmore » r = 0.15 in our nanothin films that impedes ion transport. Overall, we have presented a robust platform that facilitates probing the role of polymer-grafted surfaces on the σ of polymer electrolytes.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [4]
  1. Univ. of Chicago, Chicago, IL (United States)
  2. Univ. of Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Lemont, IL (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States)
  4. Univ. of Chicago, Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; National Science Foundation (NSF)
OSTI Identifier:
1559000
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Systems Design & Engineering
Additional Journal Information:
Journal Volume: 4; Journal Issue: 3; Journal ID: ISSN 2058-9689
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; PEO-LiTFSI thin film conductivity; interdigitated electrodes; polymer/substrate interfaces; thickness dependence

Citation Formats

Dong, Ban Xuan, Bennington, Peter, Kambe, Yu, Sharon, Daniel, Dolejsi, Moshe, Strzalka, Joseph, Burnett, Veronica F., Nealey, Paul F., and Patel, Shrayesh N. Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. United States: N. p., 2019. Web. doi:10.1039/C9ME00011A.
Dong, Ban Xuan, Bennington, Peter, Kambe, Yu, Sharon, Daniel, Dolejsi, Moshe, Strzalka, Joseph, Burnett, Veronica F., Nealey, Paul F., & Patel, Shrayesh N. Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. United States. doi:10.1039/C9ME00011A.
Dong, Ban Xuan, Bennington, Peter, Kambe, Yu, Sharon, Daniel, Dolejsi, Moshe, Strzalka, Joseph, Burnett, Veronica F., Nealey, Paul F., and Patel, Shrayesh N. Mon . "Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes". United States. doi:10.1039/C9ME00011A.
@article{osti_1559000,
title = {Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes},
author = {Dong, Ban Xuan and Bennington, Peter and Kambe, Yu and Sharon, Daniel and Dolejsi, Moshe and Strzalka, Joseph and Burnett, Veronica F. and Nealey, Paul F. and Patel, Shrayesh N.},
abstractNote = {The interfacial region where ion-transporting polymer chains are anchored to a hard, insulating phase is a major factor dictating the limits of ion-conduction in nanostructure-forming electrolytes. In this work, we investigate the effect of an end-grafted poly(ethylene oxide) (20 kg mol–1) surface on the ionic conductivity σ of PEO and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt mixtures. Specifically, we characterize nanothin films in the range of ca. 10 to 250 nm, which amplify the contributions from the polymer/substrate interface that dictate any deviations from expected bulk conductivity σbulk values. Conductivity measurements reveal a monotonic decrease in σ upon decreasing film thickness at all values of r (r = molar ratio of Li+ to EO units). The reduction from bulk-like σ occurs for film thicknesses approximately 100 nm and below for all values of r. This trend in conductivity arises from the presence of the underlying grafted-PEO layer. Through a thickness dependence normalized conductivity study, we observe nanoscale constraints leading to deviation from intrinsic conductivity of bulk PEO–LiTFSI electrolytes. Here, these nanoscale constraints correspond to an immobile interfacial zone whose thickness hint ranges from 9.5 ± 1.4 nm at r = 0.01 to 2.9 ± 1.5 nm at r = 0.15 in our nanothin films that impedes ion transport. Overall, we have presented a robust platform that facilitates probing the role of polymer-grafted surfaces on the σ of polymer electrolytes.},
doi = {10.1039/C9ME00011A},
journal = {Molecular Systems Design & Engineering},
number = 3,
volume = 4,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 1, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Comparing the Energy Content of Batteries, Fuels, and Materials
journal, March 2013

  • Balsara, Nitash P.; Newman, John
  • Journal of Chemical Education, Vol. 90, Issue 4
  • DOI: 10.1021/ed3004066

Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries
journal, December 2017


Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte
journal, July 2016

  • Zhou, Weidong; Wang, Shaofei; Li, Yutao
  • Journal of the American Chemical Society, Vol. 138, Issue 30
  • DOI: 10.1021/jacs.6b05341

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Polymer Electrolytes
journal, July 2013


Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

Block copolymer electrolytes for rechargeable lithium batteries
journal, November 2013

  • Young, Wen-Shiue; Kuan, Wei-Fan; Epps, Thomas H.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 52, Issue 1
  • DOI: 10.1002/polb.23404

Ionic conductivity in crystalline polymer electrolytes
journal, August 2001

  • Gadjourova, Zlatka; Andreev, Yuri G.; Tunstall, David P.
  • Nature, Vol. 412, Issue 6846
  • DOI: 10.1038/35087538

Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6
journal, April 1999

  • MacGlashan, Graham S.; Andreev, Yuri G.; Bruce, Peter G.
  • Nature, Vol. 398, Issue 6730
  • DOI: 10.1038/19730

Polymer electrolytes for lithium polymer batteries
journal, January 2016

  • Long, Lizhen; Wang, Shuanjin; Xiao, Min
  • Journal of Materials Chemistry A, Vol. 4, Issue 26
  • DOI: 10.1039/C6TA02621D

Polymer Electrolytes for Lithium-Ion Batteries
journal, April 1998


Phase Diagrams and Conductivity Characterization of Some PEO-LiX Electrolytes
journal, January 1986

  • Robitaille, C. D.
  • Journal of The Electrochemical Society, Vol. 133, Issue 2
  • DOI: 10.1149/1.2108569

Harnessing the Power of Plastics: Nanostructured Polymer Systems in Lithium-Ion Batteries
journal, August 2017


Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies
journal, January 2017

  • Barai, Pallab; Higa, Kenneth; Srinivasan, Venkat
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 31
  • DOI: 10.1039/C7CP03304D

Dendrite Growth in Lithium/Polymer Systems
journal, January 2003

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 150, Issue 10
  • DOI: 10.1149/1.1606686

Room temperature polymer electrolytes and batteries based on them
journal, May 1994


Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries
journal, December 2017


Promising Routes to a High Li + Transference Number Electrolyte for Lithium Ion Batteries
journal, October 2017


Nonflammable perfluoropolyether-based electrolytes for lithium batteries
journal, February 2014

  • Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 9
  • DOI: 10.1073/pnas.1314615111

Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO 2 nanoparticles
journal, January 2014

  • Tominaga, Yoichi; Yamazaki, Kenta
  • Chem. Commun., Vol. 50, Issue 34
  • DOI: 10.1039/C3CC49588D

Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes
journal, July 2015


Single lithium-ion conducting solid polymer electrolytes: advances and perspectives
journal, January 2017

  • Zhang, Heng; Li, Chunmei; Piszcz, Michal
  • Chemical Society Reviews, Vol. 46, Issue 3
  • DOI: 10.1039/C6CS00491A

Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries
journal, March 2013

  • Bouchet, Renaud; Maria, Sébastien; Meziane, Rachid
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3602

Polymeric ionic liquids for lithium-based rechargeable batteries
journal, January 2019

  • Eshetu, Gebrekidan Gebresilassie; Mecerreyes, David; Forsyth, Maria
  • Molecular Systems Design & Engineering, Vol. 4, Issue 2
  • DOI: 10.1039/C8ME00103K

Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes
journal, June 2007

  • Singh, Mohit; Odusanya, Omolola; Wilmes, Gregg M.
  • Macromolecules, Vol. 40, Issue 13
  • DOI: 10.1021/ma0629541

Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes
journal, July 2009

  • Panday, Ashoutosh; Mullin, Scott; Gomez, Enrique D.
  • Macromolecules, Vol. 42, Issue 13
  • DOI: 10.1021/ma900451e

All Solid-State Lithium-Polymer Battery Using a Self-Cross-Linking Polymer Electrolyte
journal, January 2003

  • Wang, Congxiao; Sakai, Tetsuo; Watanabe, Osamu
  • Journal of The Electrochemical Society, Vol. 150, Issue 9
  • DOI: 10.1149/1.1593652

Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes
journal, January 2013

  • Yuan, Rodger; Teran, Alexander A.; Gurevitch, Inna
  • Macromolecules, Vol. 46, Issue 3
  • DOI: 10.1021/ma3024552

Nanostructured Polymer Particles as Additives for High Conductivity, High Modulus Solid Polymer Electrolytes
journal, June 2017


High-Modulus, High-Conductivity Nanostructured Polymer Electrolyte Membranes via Polymerization-Induced Phase Separation
journal, December 2013

  • Schulze, Morgan W.; McIntosh, Lucas D.; Hillmyer, Marc A.
  • Nano Letters, Vol. 14, Issue 1
  • DOI: 10.1021/nl4034818

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Nanoscale Organic Hybrid Electrolytes
journal, August 2010

  • Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.
  • Advanced Materials, Vol. 22, Issue 33
  • DOI: 10.1002/adma.201000898

A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte
journal, January 2015

  • Agrawal, Akanksha; Choudhury, Snehashis; Archer, Lynden A.
  • RSC Advances, Vol. 5, Issue 27
  • DOI: 10.1039/C5RA01031D

Nanoparticle-Driven Assembly of Highly Conducting Hybrid Block Copolymer Electrolytes
journal, January 2015

  • Villaluenga, Irune; Chen, Xi Chelsea; Devaux, Didier
  • Macromolecules, Vol. 48, Issue 2
  • DOI: 10.1021/ma502234y

Silica nanoparticles densely grafted with PEO for ionomer plasticization
journal, January 2015

  • O'Reilly, Michael V.; Winey, Karen I.
  • RSC Advances, Vol. 5, Issue 25
  • DOI: 10.1039/C4RA15178J

Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte
journal, July 2014

  • Chintapalli, Mahati; Chen, X. Chelsea; Thelen, Jacob L.
  • Macromolecules, Vol. 47, Issue 15
  • DOI: 10.1021/ma501202c

Effect of Interfaces on the Melting of PEO Confined in Triblock PS- b -PEO- b -PS Copolymers
journal, August 2013

  • Beaudoin, E.; Phan, T. N. T.; Robinet, M.
  • Langmuir, Vol. 29, Issue 34
  • DOI: 10.1021/la401889h

Charge Transport in Nanostructured PS–PEO–PS Triblock Copolymer Electrolytes
journal, April 2014

  • Bouchet, R.; Phan, T. N. T.; Beaudoin, E.
  • Macromolecules, Vol. 47, Issue 8
  • DOI: 10.1021/ma500420w

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes
journal, January 2018

  • Sharon, Daniel; Bennington, Peter; Liu, Claire
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0291816jes

Alternative Dewetting Pathways of Thin Liquid Films
journal, August 1999


Electron-Spin Precession in a Plane Electromagnetic Wave
journal, October 2001


Dewetting Patterns and Molecular Forces: A Reconciliation
journal, June 2001


Instability, self-organization and pattern formation in thin soft films
journal, January 2015

  • Mukherjee, Rabibrata; Sharma, Ashutosh
  • Soft Matter, Vol. 11, Issue 45
  • DOI: 10.1039/C5SM01724F

Nonmonotonic Glass Transition Temperature of Polymer Films Supported on Polymer Brushes
journal, June 2018


Ion Conduction in Microphase-Separated Block Copolymer Electrolytes
journal, January 2017

  • Kambe, Yu; Arges, Christopher G.; Patel, Shrayesh
  • The Electrochemical Society Interface, Vol. 26, Issue 1
  • DOI: 10.1149/2.F07171if

Proton Transport Property in Supported Nafion Nanothin Films by Electrochemical Impedance Spectroscopy
journal, January 2014

  • Paul, Devproshad K.; McCreery, Richard; Karan, Kunal
  • Journal of The Electrochemical Society, Vol. 161, Issue 14
  • DOI: 10.1149/2.0571414jes

Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films
journal, January 2016


Simultaneous Conduction of Electronic Charge and Lithium Ions in Block Copolymers
journal, January 2012

  • Patel, Shrayesh N.; Javier, Anna E.; Stone, Greg M.
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn2045664

Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates
journal, December 2001

  • Tate, Ranjeet S.; Fryer, David S.; Pasqualini, Silvia
  • The Journal of Chemical Physics, Vol. 115, Issue 21
  • DOI: 10.1063/1.1415497

Dependence of the Glass Transition Temperature of Polymer Films on Interfacial Energy and Thickness
journal, July 2001

  • Fryer, David S.; Peters, Richard D.; Kim, Eui Jun
  • Macromolecules, Vol. 34, Issue 16
  • DOI: 10.1021/ma001932q

Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films
journal, September 1996


Role of Molecular Architecture on the Vitrification of Polymer Thin Films
journal, March 2011


Structural Relaxations of Thin Polymer Films
journal, June 2012


Mechanisms Underlying Ion Transport in Lamellar Block Copolymer Membranes
journal, March 2012

  • Ganesan, Venkat; Pyramitsyn, Victor; Bertoni, Colleen
  • ACS Macro Letters, Vol. 1, Issue 4
  • DOI: 10.1021/mz300051x

Molecular Dynamics Simulations of Poly(ethylene oxide)/LiI Melts. 1. Structural and Conformational Properties
journal, November 1998

  • Borodin, Oleg; Smith, Grant D.
  • Macromolecules, Vol. 31, Issue 23
  • DOI: 10.1021/ma980838v

Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations
journal, February 2006

  • Borodin, Oleg; Smith, Grant D.
  • Macromolecules, Vol. 39, Issue 4
  • DOI: 10.1021/ma052277v

Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes
journal, March 2009

  • Gomez, Enrique D.; Panday, Ashoutosh; Feng, Edward H.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900091n

Isolating the Effect of Molecular Weight on Ion Transport of Non-Ionic Diblock Copolymer/Ionic Liquid Mixtures
journal, March 2016


Ion Distribution in Microphase-Separated Copolymers with Periodic Dielectric Permittivity
journal, February 2018


Multiscale Simulations of Lamellar PS–PEO Block Copolymers Doped with LiPF 6 Ions
journal, May 2017


Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter
journal, January 2012


The morphology of symmetric diblock copolymers as revealed by neutron reflectivity
journal, May 1990

  • Anastasiadis, Spiros H.; Russell, Thomas P.; Satija, Sushil K.
  • The Journal of Chemical Physics, Vol. 92, Issue 9
  • DOI: 10.1063/1.458499

Theory of block copolymer interfaces in the strong segregation limit
journal, November 1993


Self-Assembly and Transport Limitations in Confined Nafion Films
journal, January 2013

  • Modestino, Miguel A.; Paul, Devproshad K.; Dishari, Shudipto
  • Macromolecules, Vol. 46, Issue 3, p. 867-873
  • DOI: 10.1021/ma301999a

Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport
journal, May 2018


Electrochemically Active Polymers for Electrochemical Energy Storage: Opportunities and Challenges
journal, August 2013

  • Mike, Jared F.; Lutkenhaus, Jodie L.
  • ACS Macro Letters, Vol. 2, Issue 9
  • DOI: 10.1021/mz400329j

Electrochemically Oxidized Electronic and Ionic Conducting Nanostructured Block Copolymers for Lithium Battery Electrodes
journal, June 2013

  • Patel, Shrayesh N.; Javier, Anna E.; Balsara, Nitash P.
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn4018685

Probing Nanoscale Ion Dynamics in Ultrathin Films of Polymerized Ionic Liquids by Broadband Dielectric Spectroscopy
journal, August 2016