DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic Structures of an [Fe(NNR2 )]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation

Abstract

The intermediacy of metal–NNH2 complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N2) fixation. In this context, we have shown that triphosphine-supported Fe(N2) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH2) complexes over an array of charge and oxidation states. Upon exposure to further H+/e equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N–H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe2) complexes, which serve as spectroscopic models for their reactive protonated congeners.Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the "NNMe2/ moiety. Specifically, although two closed-shell configurations of the "NNR/ ligand have been commonly considered in the literature-isodiazene and hydrazido(2-)-we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR2i]•- ligand coupled antiferromagnetically to the Fe center. Lastly. this one-electron redox noninnocence resembles that ofmore » the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N2 fixation activity.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [3];  [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Institutes of Health (NIH); National Science Foundation (NSF)
OSTI Identifier:
1558610
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 58; Journal Issue: 5; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Thompson, Niklas B., Oyala, Paul H., Dong, Hai T., Chalkley, Matthew J., Zhao, Jiyong, Alp, E. Ercan, Hu, Michael, Lehnert, Nicolai, and Peters, Jonas C. Electronic Structures of an [Fe(NNR2 )]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation. United States: N. p., 2019. Web. doi:10.1021/acs.inorgchem.9b00133.
Thompson, Niklas B., Oyala, Paul H., Dong, Hai T., Chalkley, Matthew J., Zhao, Jiyong, Alp, E. Ercan, Hu, Michael, Lehnert, Nicolai, & Peters, Jonas C. Electronic Structures of an [Fe(NNR2 )]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation. United States. https://doi.org/10.1021/acs.inorgchem.9b00133
Thompson, Niklas B., Oyala, Paul H., Dong, Hai T., Chalkley, Matthew J., Zhao, Jiyong, Alp, E. Ercan, Hu, Michael, Lehnert, Nicolai, and Peters, Jonas C. Thu . "Electronic Structures of an [Fe(NNR2 )]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation". United States. https://doi.org/10.1021/acs.inorgchem.9b00133. https://www.osti.gov/servlets/purl/1558610.
@article{osti_1558610,
title = {Electronic Structures of an [Fe(NNR2 )]+/0/– Redox Series: Ligand Noninnocence and Implications for Catalytic Nitrogen Fixation},
author = {Thompson, Niklas B. and Oyala, Paul H. and Dong, Hai T. and Chalkley, Matthew J. and Zhao, Jiyong and Alp, E. Ercan and Hu, Michael and Lehnert, Nicolai and Peters, Jonas C.},
abstractNote = {The intermediacy of metal–NNH2 complexes has been implicated in the catalytic cycles of several examples of transition-metal-mediated nitrogen (N2) fixation. In this context, we have shown that triphosphine-supported Fe(N2) complexes can be reduced and protonated at the distal N atom to yield Fe(NNH2) complexes over an array of charge and oxidation states. Upon exposure to further H+/e– equivalents, these species either continue down a distal-type Chatt pathway to yield a terminal iron(IV) nitride or instead follow a distal-to-alternating pathway resulting in N–H bond formation at the proximal N atom. To understand the origin of this divergent selectivity, herein we synthesize and elucidate the electronic structures of a redox series of Fe(NNMe2) complexes, which serve as spectroscopic models for their reactive protonated congeners.Using a combination of spectroscopies, in concert with density functional theory and correlated ab initio calculations, we evidence one-electron redox noninnocence of the "NNMe2/ moiety. Specifically, although two closed-shell configurations of the "NNR/ ligand have been commonly considered in the literature-isodiazene and hydrazido(2-)-we provide evidence suggesting that, in their reduced forms, the present iron complexes are best viewed in terms of an open-shell [NNR2i]•- ligand coupled antiferromagnetically to the Fe center. Lastly. this one-electron redox noninnocence resembles that of the classically noninnocent ligand NO and may have mechanistic implications for selectivity in N2 fixation activity.},
doi = {10.1021/acs.inorgchem.9b00133},
journal = {Inorganic Chemistry},
number = 5,
volume = 58,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The reduction of ligating dinitrogen to yield a ligating N2H2 moiety
journal, January 1972

  • Chatt, J.; Heath, G. A.; Richards, R. L.
  • Journal of the Chemical Society, Chemical Communications, Issue 18
  • DOI: 10.1039/c39720001010

Diazene-N-(di-imide) and hydrazido-(2–)N-(aminoimido) complexes: the addition of acids to dinitrogen complexes
journal, January 1974

  • Chatt, Joseph; Heath, Graham A.; Richards, Raymond L.
  • J. Chem. Soc., Dalton Trans., Issue 19
  • DOI: 10.1039/DT9740002074

The mechanism of the secondary alkylation of dinitrogen and the relationship between structure and reactivity in the alkylation of co-ordinated dinitrogen
journal, January 1980

  • Chatt, Joseph; Hussain, Wasif; Leigh, G. Jeffery
  • Journal of the Chemical Society, Chemical Communications, Issue 21
  • DOI: 10.1039/c39800001024

Recent advances in the chemistry of nitrogen fixation
journal, December 1978

  • Chatt, Joseph.; Dilworth, Jonathan R.; Richards, Raymond L.
  • Chemical Reviews, Vol. 78, Issue 6
  • DOI: 10.1021/cr60316a001

Diazene, diazenido, isodiazene and hydrazido complexes
journal, January 2017


Stepwise conversion of dinitrogen co-ordinated to molybdenum into an amine and an imido-complex. Relevance to the reactions of nitrogenase
journal, January 1982

  • Hussain, Wasif; Leigh, G. Jeffery; Pickett, Christopher J.
  • Journal of the Chemical Society, Chemical Communications, Issue 13
  • DOI: 10.1039/c39820000747

Synthesis, Structure, and LLCT Transitions in Terminal Hydrazido(2−) Bipyridine Complexes of Titanium
journal, August 2007

  • Patel, Sameer; Li, Yahong; Odom, Aaron L.
  • Inorganic Chemistry, Vol. 46, Issue 16
  • DOI: 10.1021/ic700426s

N–N Bond Cleavage of Mid-Valent Ta(IV) Hydrazido and Hydrazidium Complexes Relevant to the Schrock Cycle for Dinitrogen Fixation
journal, June 2013

  • Keane, Andrew J.; Zavalij, Peter Y.; Sita, Lawrence R.
  • Journal of the American Chemical Society, Vol. 135, Issue 26
  • DOI: 10.1021/ja402804k

Redox Non-Innocent Behavior of a Terminal Iridium Hydrazido(2−) Triple Bond
journal, October 2016

  • Pearce, Adam J.; Cassabaum, Alyssa A.; Gast, Grace E.
  • Angewandte Chemie International Edition, Vol. 55, Issue 42
  • DOI: 10.1002/anie.201607648

Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments: Nitrogen Fixation Catalyzed by Transition Metal Complexes: Recent Developments
journal, February 2018

  • Stucke, Nadja; Flöser, Benedikt M.; Weyrich, Thomas
  • European Journal of Inorganic Chemistry, Vol. 2018, Issue 12
  • DOI: 10.1002/ejic.201701326

Isolation of an iron-nitrene complex from the dioxygen- and iron porphyrin-dependent oxidation of a hydrazine
journal, August 1982

  • Mansuy, D.; Battioni, P.; Mahy, J. P.
  • Journal of the American Chemical Society, Vol. 104, Issue 16
  • DOI: 10.1021/ja00380a031

N 2 Functionalization at Iron Metallaboratranes
journal, November 2011

  • Moret, Marc-Etienne; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja208675p

H–H and Si–H Bond Addition to Fe≡NNR 2 Intermediates Derived from N 2
journal, March 2013

  • Suess, Daniel L. M.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 135, Issue 13
  • DOI: 10.1021/ja400836u

Dinitrogen Activation at Iron and Cobalt Metallalumatranes
journal, July 2013

  • Rudd, P. Alex; Planas, Nora; Bill, Eckhard
  • European Journal of Inorganic Chemistry, Vol. 2013, Issue 22-23
  • DOI: 10.1002/ejic.201300272

Effects of N 2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex
journal, June 2018

  • McWilliams, Sean F.; Bill, Eckhard; Lukat-Rodgers, Gudrun
  • Journal of the American Chemical Society, Vol. 140, Issue 27
  • DOI: 10.1021/jacs.8b04828

Characterization of an Fe≡N–NH 2 Intermediate Relevant to Catalytic N 2 Reduction to NH 3
journal, June 2015

  • Anderson, John S.; Cutsail, George E.; Rittle, Jonathan
  • Journal of the American Chemical Society, Vol. 137, Issue 24
  • DOI: 10.1021/jacs.5b03432

Nitrogen Fixation via a Terminal Fe(IV) Nitride
journal, October 2017

  • Thompson, Niklas B.; Green, Michael T.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b09364

An Fe-N 2 Complex That Generates Hydrazine and Ammonia via Fe═NNH 2 : Demonstrating a Hybrid Distal-to-Alternating Pathway for N 2 Reduction
journal, March 2016

  • Rittle, Jonathan; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.6b01230

Complexes with Nitrogen-Centered Radical Ligands: Classification, Spectroscopic Features, Reactivity, and Catalytic Applications
journal, November 2013

  • Suarez, Alma I. Olivos; Lyaskovskyy, Volodymyr; Reek, Joost N. H.
  • Angewandte Chemie International Edition, Vol. 52, Issue 48
  • DOI: 10.1002/anie.201301487

A Terminal Ni(III)−Imide with Diverse Reactivity Pathways
journal, August 2005

  • Kogut, Elzbieta; Wiencko, Heather L.; Zhang, Libei
  • Journal of the American Chemical Society, Vol. 127, Issue 32
  • DOI: 10.1021/ja0533186

Three-Coordinate Copper(I) Amido and Aminyl Radical Complexes
journal, March 2009

  • Mankad, Neal P.; Antholine, William E.; Szilagyi, Robert K.
  • Journal of the American Chemical Society, Vol. 131, Issue 11
  • DOI: 10.1021/ja809834k

Selectivity and Mechanism of Hydrogen Atom Transfer by an Isolable Imidoiron(III) Complex
journal, June 2011

  • Cowley, Ryan E.; Eckert, Nathan A.; Vaddadi, Sridhar
  • Journal of the American Chemical Society, Vol. 133, Issue 25
  • DOI: 10.1021/ja2005303

Catalytic C−H Bond Amination from High-Spin Iron Imido Complexes
journal, April 2011

  • King, Evan R.; Hennessy, Elisabeth T.; Betley, Theodore A.
  • Journal of the American Chemical Society, Vol. 133, Issue 13
  • DOI: 10.1021/ja110066j

Characterization of Iron-Imido Species Relevant for N -Group Transfer Chemistry
journal, February 2016

  • Iovan, Diana A.; Betley, Theodore A.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b12582

A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57 Fe Mössbauer Data, and a Hydride Resting State
journal, January 2016

  • Del Castillo, Trevor J.; Thompson, Niklas B.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 138, Issue 16
  • DOI: 10.1021/jacs.6b01706

Catalytic N 2 -to-NH 3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET
journal, February 2017

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • ACS Central Science, Vol. 3, Issue 3
  • DOI: 10.1021/acscentsci.7b00014

Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p K a Effects and Demonstrating Electrocatalysis
journal, April 2018

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • Journal of the American Chemical Society, Vol. 140, Issue 19
  • DOI: 10.1021/jacs.8b02335

Molecular orbital analysis of the metal–hydrazide(2−) bonding in co-ordination chemistry †
journal, January 1998

  • Kahlal, Samia; Saillard, Jean-Yves; Hamon, Jean-René
  • Journal of the Chemical Society, Dalton Transactions, Issue 7
  • DOI: 10.1039/a706923e

Bonding analysis of transition metal NNR end-on complexes and comparison with isoelectronic NNR2 species
journal, January 2001

  • Kahlal, Samia; Saillard, Jean-Yves; Hamon, Jean-Rene´
  • New Journal of Chemistry, Vol. 25, Issue 2
  • DOI: 10.1039/b005916l

Synthesis and direct spectroscopic observation of a 1,1-dialkyldiazene. Infrared and electronic spectrum of N-(2,2,6,6-tetramethylpiperidyl)nitrene
journal, March 1978

  • Hinsberg, William D.; Dervan, Peter B.
  • Journal of the American Chemical Society, Vol. 100, Issue 5
  • DOI: 10.1021/ja00473a051

Low-temperature matrix isolation of the 1,1-diazene H2NN. Electronic and infrared characterization
journal, August 1984

  • Sylwester, Alan P.; Dervan, Peter B.
  • Journal of the American Chemical Society, Vol. 106, Issue 16
  • DOI: 10.1021/ja00328a076

Ground and excited states of isodiazene – an ab initio study
journal, April 2000


Heme versus Non-Heme Iron-Nitroxyl {FeN(H)O} 8 Complexes: Electronic Structure and Biologically Relevant Reactivity
journal, February 2014

  • Speelman, Amy L.; Lehnert, Nicolai
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400256u

Electron paramagnetic resonance spectra of 1,1-dialkylhydrazyl radicals in solution
journal, September 1973

  • Malatesta, V.; Ingold, K. U.
  • Journal of the American Chemical Society, Vol. 95, Issue 18
  • DOI: 10.1021/ja00799a045

The EPR Spectra of Hydrazyl and Some 1-Substituted Hydrazyl Radicals in Solution
journal, March 1974

  • Malatesta, V.; Lindsay, D.; Horswill, E. C.
  • Canadian Journal of Chemistry, Vol. 52, Issue 5
  • DOI: 10.1139/v74-138

Electron paramagnetic resonance spectroscopic study of radical cations from hydrazine, methylhydrazine, and dimethylhydrazines
journal, June 1971

  • Smith, P.; Stevens, R. D.; Kaba, R. A.
  • The Journal of Physical Chemistry, Vol. 75, Issue 13
  • DOI: 10.1021/j100682a024

Quantitative Geometric Descriptions of the Belt Iron Atoms of the Iron−Molybdenum Cofactor of Nitrogenase and Synthetic Iron(II) Model Complexes
journal, January 2007

  • Vela, Javier; Cirera, Jordi; Smith, Jeremy M.
  • Inorganic Chemistry, Vol. 46, Issue 1
  • DOI: 10.1021/ic0609148

Photolysis of Dimethylcarbamoyl Azide in an Argon Matrix: Spectroscopic Identification of Dimethylamino Isocyanate and 1,1-Dimethyldiazene
journal, November 2013

  • Pasinszki, Tibor; Krebsz, Melinda; Tarczay, György
  • The Journal of Organic Chemistry, Vol. 78, Issue 23
  • DOI: 10.1021/jo402023m

A complex of the hydrazidium (N–NH 3 + ) ligand: X-ray structure of [WCl(NNH 3 )(PMe 3 ) 4 ]Cl 2
journal, January 1987

  • Galindo, Agustin; Hills, Adrian; Hughes, David L.
  • J. Chem. Soc., Chem. Commun., Issue 24
  • DOI: 10.1039/C39870001815

Protonation reactions of dinitrogen complexes of molybdenum and tungsten with PMe3 as Co-ligand. X-Ray structure of the hydrazidium complex [WCl(NNH3)(PMe3)4] Cl2
journal, January 1990

  • Galindo, Agustin; Hills, Adrian; Hughes, David L.
  • Journal of the Chemical Society, Dalton Transactions, Issue 1
  • DOI: 10.1039/dt9900000283

Synthesis and reactions of monomeric hydrazine and hydrazido complexes that contain the Cp*MoMe3 core
journal, June 1993

  • Vale, Michael G.; Schrock, Richard R.
  • Inorganic Chemistry, Vol. 32, Issue 12
  • DOI: 10.1021/ic00064a030

Titanium Hydrazido and Imido Complexes:  Synthesis, Structure, Reactivity, and Relevance to Alkyne Hydroamination
journal, February 2004

  • Li, Yahong; Shi, Yanhui; Odom, Aaron L.
  • Journal of the American Chemical Society, Vol. 126, Issue 6
  • DOI: 10.1021/ja038320g

Synthesis, Structures and Reactivity of Group 4 Hydrazido Complexes Supported by Calix[4]arene Ligands
journal, December 2008

  • Clulow, Andrew J.; Selby, Jonathan D.; Cushion, Michael G.
  • Inorganic Chemistry, Vol. 47, Issue 24
  • DOI: 10.1021/ic801735c

The Cambridge Structural Database
journal, April 2016

  • Groom, Colin R.; Bruno, Ian J.; Lightfoot, Matthew P.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 72, Issue 2, p. 171-179
  • DOI: 10.1107/S2052520616003954

XAS Characterization of a Nitridoiron(IV) Complex with a Very Short Fe−N Bond
journal, July 2007

  • Rohde, Jan-Uwe; Betley, Theodore A.; Jackson, Timothy A.
  • Inorganic Chemistry, Vol. 46, Issue 14
  • DOI: 10.1021/ic700818q

An Iron Nitride Complex
journal, March 2008

  • Vogel, Carola; Heinemann, Frank W.; Sutter, Jörg
  • Angewandte Chemie International Edition, Vol. 47, Issue 14
  • DOI: 10.1002/anie.200800600

Structural and Spectroscopic Characterization of an Electrophilic Iron Nitrido Complex
journal, August 2008

  • Scepaniak, Jeremiah J.; Fulton, Meita D.; Bontchev, Ranko P.
  • Journal of the American Chemical Society, Vol. 130, Issue 32
  • DOI: 10.1021/ja8027372

Spectroscopic Properties and Electronic Structure of Five- and Six-Coordinate Iron(II) Porphyrin NO Complexes:  Effect of the Axial N-Donor Ligand
journal, April 2006

  • Praneeth, V. K. K.; Näther, Christian; Peters, Gerhard
  • Inorganic Chemistry, Vol. 45, Issue 7
  • DOI: 10.1021/ic050865j

Vibrational Assignments of Six-Coordinate Ferrous Heme Nitrosyls: New Insight from Nuclear Resonance Vibrational Spectroscopy
journal, November 2008

  • Paulat, Florian; Berto, Timothy C.; DeBeer George, Serena
  • Inorganic Chemistry, Vol. 47, Issue 24
  • DOI: 10.1021/ic801626w

Atomic parameters for paramagnetic resonance data
journal, June 1978


Terminal Iron Dinitrogen and Iron Imide Complexes Supported by a Tris(phosphino)borane Ligand
journal, January 2011

  • Moret, Marc-Etienne; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 50, Issue 9
  • DOI: 10.1002/anie.201006918

Excited electronic states of ketene
journal, May 1976

  • Dykstra, Clifford E.; Schaefer, Henry F.
  • Journal of the American Chemical Society, Vol. 98, Issue 10
  • DOI: 10.1021/ja00426a001

Copper Corroles: the Question of Noninnocence
journal, November 2010

  • Pierloot, Kristine; Zhao, Hailiang; Vancoillie, Steven
  • Inorganic Chemistry, Vol. 49, Issue 22
  • DOI: 10.1021/ic100866z

Electronic Structure of Selected {FeNO} 7 Complexes in Heme and Non-Heme Architectures: A Density Functional and Multireference ab Initio Study
journal, January 2010

  • Radoń, Mariusz; Broclawik, Ewa; Pierloot, Kristine
  • The Journal of Physical Chemistry B, Vol. 114, Issue 3
  • DOI: 10.1021/jp910220r

A Step beyond the Feltham–Enemark Notation: Spectroscopic and Correlated ab Initio Computational Support for an Antiferromagnetically Coupled M(II)–(NO) Description of Tp*M(NO) (M = Co, Ni)
journal, November 2011

  • Tomson, Neil C.; Crimmin, Mark R.; Petrenko, Taras
  • Journal of the American Chemical Society, Vol. 133, Issue 46
  • DOI: 10.1021/ja206042k

Structural and Spectroscopic Characterization of a High-Spin {FeNO} 6 Complex with an Iron(IV)−NO Electronic Structure
journal, April 2016

  • Speelman, Amy L.; Zhang, Bo; Krebs, Carsten
  • Angewandte Chemie International Edition, Vol. 55, Issue 23
  • DOI: 10.1002/anie.201601742

Electronic structure analysis of multistate reactivity in transition metal catalyzed reactions: the case of C–H bond activation by non-heme iron(iv)–oxo cores
journal, January 2013

  • Ye, Shengfa; Geng, Cai-Yun; Shaik, Sason
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 21
  • DOI: 10.1039/c3cp00080j

Ground-state potential energy surface of diazene
journal, May 1987

  • Jensen, Hans Joergen A.; Joergensen, Poul; Helgaker, Trygve
  • Journal of the American Chemical Society, Vol. 109, Issue 10
  • DOI: 10.1021/ja00244a007

Activation of Diazene and the Nitrogenase Problem:  An Investigation of Diazene-Bridged Fe(II) Centers with Sulfur Ligand Sphere. 2. Vibrational Properties
journal, September 1997

  • Wiesler, Beatrix E.; Tuczek, Felix; Hennige, Andreas
  • Journal of the American Chemical Society, Vol. 119, Issue 38
  • DOI: 10.1021/ja970420x

Reduction Pathway of End-On Coordinated Dinitrogen. 3. Electronic Structure and Spectroscopic Properties of Molybdenum/Tungsten Hydrazidium Complexes
journal, January 2003

  • Horn, Kay H.; Lehnert, Nicolai; Tuczek, Felix
  • Inorganic Chemistry, Vol. 42, Issue 4
  • DOI: 10.1021/ic020458x

Electron spin resonance spectra of some isotopically substituted hydrocarbon radicals
journal, January 1967

  • Fessenden, Richard W.
  • The Journal of Physical Chemistry, Vol. 71, Issue 1
  • DOI: 10.1021/j100860a009

Efficient Nitrogen Fixation via a Redox-Flexible Single-Iron Site with Reverse-Dative Iron → Boron σ Bonding
journal, April 2018

  • Lu, Jun-Bo; Ma, Xue-Lu; Wang, Jia-Qi
  • The Journal of Physical Chemistry A, Vol. 122, Issue 18
  • DOI: 10.1021/acs.jpca.8b02089

Evaluating Molecular Cobalt Complexes for the Conversion of N 2 to NH 3
journal, May 2015


N–H Bond Dissociation Enthalpies and Facile H Atom Transfers for Early Intermediates of Fe–N 2 and Fe–CN Reductions
journal, February 2017

  • Rittle, Jonathan; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.6b12861

Studies Relevant to Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum Triamidoamine Complexes
journal, February 2005

  • Yandulov, Dmitry V.; Schrock, Richard R.
  • Inorganic Chemistry, Vol. 44, Issue 4
  • DOI: 10.1021/ic040095w

A bound reaction intermediate sheds light on the mechanism of nitrogenase
journal, March 2018


Nuclear resonance vibrational spectroscopy of a protein active-site mimic
journal, August 2001


Nuclear resonant spectroscopy
journal, January 2004


SHELXT – Integrated space-group and crystal-structure determination
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053273314026370

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218