DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy [Determination of hydroxyl groups in biorefinery resources via quantitative 31P Nuclear Magnetic Resonance Spectroscopy]

Abstract

The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. Furthermore, the method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30–120 min).

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [1]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]
  1. The Univ. of Tennessee, Knoxville, TN (United States)
  2. Ca’ Foscari Univ. of Venice, Venice (Italy)
  3. Qingdao Univ., Qingdao (China)
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. The Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); The Univ. of Tennessee Inst. of Agriculture, Knoxville, TN (United States)
  6. North Carolina State Univ., Raleigh, NC (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1558488
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Protocols
Additional Journal Information:
Journal Volume: 14; Journal Issue: 9; Journal ID: ISSN 1754-2189
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Lignin; tannin; biomass; 31P NMR; hydroxyl; phosphitylation

Citation Formats

Meng, Xianzhi, Crestini, Claudia, Ben, Haoxi, Hao, Naijia, Pu, Yunqiao Joseph, Ragauskas, Arthur J., and Argyropoulos, Dimitris S. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy [Determination of hydroxyl groups in biorefinery resources via quantitative 31P Nuclear Magnetic Resonance Spectroscopy]. United States: N. p., 2019. Web. doi:10.1038/s41596-019-0191-1.
Meng, Xianzhi, Crestini, Claudia, Ben, Haoxi, Hao, Naijia, Pu, Yunqiao Joseph, Ragauskas, Arthur J., & Argyropoulos, Dimitris S. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy [Determination of hydroxyl groups in biorefinery resources via quantitative 31P Nuclear Magnetic Resonance Spectroscopy]. United States. https://doi.org/10.1038/s41596-019-0191-1
Meng, Xianzhi, Crestini, Claudia, Ben, Haoxi, Hao, Naijia, Pu, Yunqiao Joseph, Ragauskas, Arthur J., and Argyropoulos, Dimitris S. Wed . "Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy [Determination of hydroxyl groups in biorefinery resources via quantitative 31P Nuclear Magnetic Resonance Spectroscopy]". United States. https://doi.org/10.1038/s41596-019-0191-1. https://www.osti.gov/servlets/purl/1558488.
@article{osti_1558488,
title = {Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy [Determination of hydroxyl groups in biorefinery resources via quantitative 31P Nuclear Magnetic Resonance Spectroscopy]},
author = {Meng, Xianzhi and Crestini, Claudia and Ben, Haoxi and Hao, Naijia and Pu, Yunqiao Joseph and Ragauskas, Arthur J. and Argyropoulos, Dimitris S.},
abstractNote = {The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. Furthermore, the method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30–120 min).},
doi = {10.1038/s41596-019-0191-1},
journal = {Nature Protocols},
number = 9,
volume = 14,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 166 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Typical integration regions for lignins in a 31P NMR spectrum.

Save / Share:

Works referenced in this record:

A polymer of caffeyl alcohol in plant seeds
journal, January 2012

  • Chen, F.; Tobimatsu, Y.; Havkin-Frenkel, D.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 5
  • DOI: 10.1073/pnas.1120992109

1 H– 13 C HSQC NMR Spectroscopy for Estimating Procyanidin/Prodelphinidin and cis / trans -Flavan-3-ol Ratios of Condensed Tannin Samples: Correlation with Thiolysis
journal, February 2015

  • Zeller, Wayne E.; Ramsay, Aina; Ropiak, Honorata M.
  • Journal of Agricultural and Food Chemistry, Vol. 63, Issue 7
  • DOI: 10.1021/jf504743b

Determination of Cellulose Reactivity by Using Phosphitylation and Quantitative 31 P NMR Spectroscopy
journal, November 2008

  • Filpponen, Ilari; Argyropoulos, Dimitris S.
  • Industrial & Engineering Chemistry Research, Vol. 47, Issue 22
  • DOI: 10.1021/ie800936x

Characterization and analysis of the molecular weight of lignin for biorefining studies
journal, June 2014

  • Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn
  • Biofuels, Bioproducts and Biorefining, Vol. 8, Issue 6
  • DOI: 10.1002/bbb.1500

Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes
journal, January 2015

  • Wu, Weibing; Huang, Fang; Pan, Shaobo
  • Journal of Materials Chemistry A, Vol. 3, Issue 5
  • DOI: 10.1039/C4TA04761C

Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene
journal, January 2015

  • Sadeghifar, Hasan; Argyropoulos, Dimitris S.
  • ACS Sustainable Chemistry & Engineering, Vol. 3, Issue 2
  • DOI: 10.1021/sc500756n

Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments
journal, April 2017


A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers
journal, September 2016

  • Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.
  • Biotechnology Journal, Vol. 11, Issue 10
  • DOI: 10.1002/biot.201600266

Small-scale and automatable high-throughput compositional analysis of biomass
journal, October 2010

  • DeMartini, Jaclyn D.; Studer, Michael H.; Wyman, Charles E.
  • Biotechnology and Bioengineering, Vol. 108, Issue 2, p. 306-312
  • DOI: 10.1002/bit.22937

Determination of the Diglyceride Content in Greek Virgin Olive Oils and Some Commercial Olive Oils by Employing 31 P NMR Spectroscopy
journal, April 2002

  • Fronimaki, Penelope; Spyros, Apostolos; Christophoridou, Stella
  • Journal of Agricultural and Food Chemistry, Vol. 50, Issue 8
  • DOI: 10.1021/jf011380q

Chemical Groups and Structural Characterization of Lignin via Thiol-Mediated Demethylation
journal, December 2013


Diversity of structure and function in oligomeric flavanoids
journal, January 1992


Products and Functional Group Distributions in Pyrolysis Oil of Chromated Copper Arsenate (CCA)-Treated Wood, as Elucidated by Gas Chromatography and a Novel 31 P NMR-Based Method
journal, August 2007

  • Fu, Qirong; Argyropoulos, Dimitris S.; Tilotta, David C.
  • Industrial & Engineering Chemistry Research, Vol. 46, Issue 16
  • DOI: 10.1021/ie0702274

Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in Medicago truncatula
journal, July 2013

  • Zhao, Q.; Tobimatsu, Y.; Zhou, R.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 33
  • DOI: 10.1073/pnas.1312234110

Application of 31P NMR spectroscopy and chemical derivatization for metabolite profiling of lipophilic compounds in human serum
journal, July 2009

  • DeSilva, M. Aruni; Shanaiah, Narasimhamurthy; Nagana Gowda, G. A.
  • Magnetic Resonance in Chemistry, Vol. 47, Issue S1
  • DOI: 10.1002/mrc.2480

Arylpropane-1,3-diols in Lignins from Normal and CAD-Deficient Pines
journal, July 1999

  • Ralph, John; Kim, Hoon; Peng, Junpeng
  • Organic Letters, Vol. 1, Issue 2
  • DOI: 10.1021/ol9906559

Cellulose Nanocrystal Microcapsules as Tunable Cages for Nano- and Microparticles
journal, October 2015


The strong association of condensed phenolic moieties in isolated lignins with their inhibition of enzymatic hydrolysis
journal, January 2016

  • Sun, Shaolong; Huang, Yang; Sun, Runcang
  • Green Chemistry, Vol. 18, Issue 15
  • DOI: 10.1039/C6GC00685J

The Path Forward for Biofuels and Biomaterials
journal, January 2006

  • Ragauskas, Arthur J.; Williams, Charlotte K.; Davison, Brian H.
  • Science, Vol. 311, Issue 5760, p. 484-489
  • DOI: 10.1126/science.1114736

Structural Characterization of Lignin during Pinus taeda Wood Treatment with Ceriporiopsis subvermispora
journal, July 2004


Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain
journal, November 1977

  • Price, Martin L.; Butler, Larry G.
  • Journal of Agricultural and Food Chemistry, Vol. 25, Issue 6
  • DOI: 10.1021/jf60214a034

Imidazolium-Based Ionic Liquids as Efficient Reagents for the C−O Bond Cleavage of Lignin
journal, December 2017


Determination of Hydroxyl Groups in Lignins Evaluation of 1 H-, 13 C-, 31 P-NMR, FTIR and Wet Chemical Methods
journal, January 1994


A new method for the analysis of phenolic groups in lignins by ʹH NMR spectrometry
journal, August 1994


Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin
journal, September 2015

  • Lupoi, Jason S.; Singh, Seema; Parthasarathi, Ramakrishnan
  • Renewable and Sustainable Energy Reviews, Vol. 49
  • DOI: 10.1016/j.rser.2015.04.091

An Unusual Lignin from Kenaf
journal, January 1996

  • Ralph, John
  • Journal of Natural Products, Vol. 59, Issue 4, p. 341-342
  • DOI: 10.1021/np960143s

Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins
journal, June 2017

  • Carlos del Río, José; Rencoret, Jorge; Gutiérrez, Ana
  • Plant Physiology, Vol. 174, Issue 4
  • DOI: 10.1104/pp.17.00362

Quantitative hsqc Analyses of Lignin: a Practical Comparison
journal, March 2013

  • Sette, Marco; Lange, Heiko; Crestini, Claudia
  • Computational and Structural Biotechnology Journal, Vol. 6, Issue 7
  • DOI: 10.5936/csbj.201303016

Fast, Easy, and Economical Quantification of Lignin Phenolic Hydroxyl Groups: Comparison with Classical Techniques
journal, April 2018


Determination of Arylglycerol-β-aryl Ethers and Other Linkages in Lignins Using DFRC/ 31 P NMR
journal, February 2001

  • Tohmura, Shin-ichiro; Argyropoulos, Dimitris S.
  • Journal of Agricultural and Food Chemistry, Vol. 49, Issue 2
  • DOI: 10.1021/jf001026c

Tannin Structural Elucidation and Quantitative 31 P NMR Analysis. 1. Model Compounds
journal, September 2013

  • Melone, Federica; Saladino, Raffaele; Lange, Heiko
  • Journal of Agricultural and Food Chemistry, Vol. 61, Issue 39
  • DOI: 10.1021/jf401477c

Quality assessment and authentication of virgin olive oil by NMR spectroscopy: A critical review
journal, February 2013


Quantitative Phosphorus-31 NMR Analysis of Six Soluble Lignins
journal, February 1994


Quantitative Phosphorus-31 NMR Analysis of Lignins, a New Tool for the Lignin Chemist
journal, February 1994


Lignin Structural Variation in Hardwood Species
journal, May 2012

  • Santos, Ricardo B.; Capanema, Ewellyn A.; Balakshin, Mikhail Yu.
  • Journal of Agricultural and Food Chemistry, Vol. 60, Issue 19
  • DOI: 10.1021/jf301276a

New insights into the structure and composition of technical lignins: a comparative characterisation study
journal, January 2016

  • Constant, Sandra; Wienk, Hans L. J.; Frissen, Augustinus E.
  • Green Chemistry, Vol. 18, Issue 9
  • DOI: 10.1039/C5GC03043A

Thermal properties of lignin in copolymers, blends, and composites: a review
journal, January 2015

  • Sen, Sanghamitra; Patil, Shradha; Argyropoulos, Dimitris S.
  • Green Chemistry, Vol. 17, Issue 11
  • DOI: 10.1039/C5GC01066G

Characterization of fractional cuts of co-solvent enhanced lignocellulosic fractionation lignin isolated by sequential precipitation
journal, January 2019


Structural Characterization of Lignin in Wild-Type versus COMT Down-Regulated Switchgrass
journal, January 2014


Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass
journal, February 2011

  • Fu, Chunxiang; Mielenz, Jonathan R.; Xiao, Xirong
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 9, p. 3803-3808
  • DOI: 10.1073/pnas.1100310108

A new method for rapid degree of substitution and purity determination of chloroform-soluble cellulose esters, using 31P NMR
journal, January 2010

  • King, Alistair W. T.; Jalomäki, Jarno; Granström, Mari
  • Analytical Methods, Vol. 2, Issue 10
  • DOI: 10.1039/c0ay00336k

Classification of Edible Oils by Employing 31 P and 1 H NMR Spectroscopy in Combination with Multivariate Statistical Analysis. A Proposal for the Detection of Seed Oil Adulteration in Virgin Olive Oils
journal, September 2003

  • Vigli, Georgia; Philippidis, Angelos; Spyros, Apostolos
  • Journal of Agricultural and Food Chemistry, Vol. 51, Issue 19
  • DOI: 10.1021/jf030100z

Modelling the kinetics of pyrolysis oil hydrothermal upgrading based on the connectivity of oxygen atoms, quantified by 31 P-NMR
journal, March 2017


Detection and Quantification of Free Glycerol in Virgin Olive Oil by 31P-NMR Spectroscopy
journal, September 2009

  • Hatzakis, Emmanuel; Agiomyrgianaki, Alexia; Dais, Photis
  • Journal of the American Oil Chemists' Society, Vol. 87, Issue 1
  • DOI: 10.1007/s11746-009-1466-4

Quantifying Biomass Composition by Gas Chromatography/Mass Spectrometry
journal, September 2014

  • Long, Christopher P.; Antoniewicz, Maciek R.
  • Analytical Chemistry, Vol. 86, Issue 19
  • DOI: 10.1021/ac502734e

Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids
journal, October 2007


Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood
journal, March 2013

  • Du, Xueyu; Gellerstedt, Goran; Li, Jiebing
  • The Plant Journal, Vol. 74, Issue 2
  • DOI: 10.1111/tpj.12124

Detection of Extra Virgin Olive Oil Adulteration with Lampante Olive Oil and Refined Olive Oil Using Nuclear Magnetic Resonance Spectroscopy and Multivariate Statistical Analysis
journal, April 2005

  • Fragaki, Georgia; Spyros, Apostolos; Siragakis, George
  • Journal of Agricultural and Food Chemistry, Vol. 53, Issue 8
  • DOI: 10.1021/jf040279t

31 P NMR Spectroscopy in Wood Chemistry. I. Model Compounds
journal, June 1991

  • Archipov, Y.; Argyropoulos, D. S.; Bolker, H. I.
  • Journal of Wood Chemistry and Technology, Vol. 11, Issue 2
  • DOI: 10.1080/02773819108050267

Hydrothermal deoxygenation of pyrolysis oil from Norwegian spruce: Picea abies
journal, September 2013


Advances in solid-state NMR of cellulose
journal, June 2014


31 P NMR Characterization of Tricin and Its Structurally Similar Flavonoids
journal, April 2017


Application of 31 P NMR Spectroscopy in Food Analysis. 1. Quantitative Determination of the Mono- and Diglyceride Composition of Olive Oils
journal, March 2000

  • Spyros, Apostolos; Dais, Photis
  • Journal of Agricultural and Food Chemistry, Vol. 48, Issue 3
  • DOI: 10.1021/jf9910990

Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift
journal, January 2017

  • Chiu, Liang-da; Ho, Shih-Hsin; Shimada, Rintaro
  • Biotechnology for Biofuels, Vol. 10, Issue 1
  • DOI: 10.1186/s13068-016-0691-y

Tricin, a Flavonoid Monomer in Monocot Lignification
journal, February 2015


N-Hydroxy Compounds as New Internal Standards for the 31P-NMR Determination of Lignin Hydroxy Functional Groups
journal, April 2001

  • Zawadzki, Michael; Ragauskas, Arthur
  • Holzforschung, Vol. 55, Issue 3
  • DOI: 10.1515/HF.2001.047

Structural characterization of birch lignin isolated from a pressurized hot water extraction and mild alkali pulped biorefinery process
journal, January 2018


Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods
journal, November 2013


Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization
journal, January 2011

  • Pu, Yunqiao; Cao, Shilin; Ragauskas, Arthur J.
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01201k

Protein precipitation method for the quantitative determination of tannins
journal, July 1978

  • Hagerman, Ann E.; Butler, Larry G.
  • Journal of Agricultural and Food Chemistry, Vol. 26, Issue 4
  • DOI: 10.1021/jf60218a027

Chemical Transformations of Poplar Lignin during Cosolvent Enhanced Lignocellulosic Fractionation Process
journal, May 2018

  • Meng, Xianzhi; Parikh, Aakash; Seemala, Bhogeswararao
  • ACS Sustainable Chemistry & Engineering, Vol. 6, Issue 7
  • DOI: 10.1021/acssuschemeng.8b01028

Die Verwendung von natürlichen Polyphenolen zur Herstellung von Holzleimen
journal, July 1980

  • Weißmann, G.; Ayla, C.
  • Holz als Roh- und Werkstoff, Vol. 38, Issue 7
  • DOI: 10.1007/BF02616393

Proanthocyanidin biosynthesis – still more questions than answers?
journal, September 2005


31P NMR spectroscopy in the quality control and authentication of extra-virgin olive oil: A review of recent progress
journal, January 2007

  • Dais, Photis; Spyros, Apostolos
  • Magnetic Resonance in Chemistry, Vol. 45, Issue 5
  • DOI: 10.1002/mrc.1985

Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy
journal, November 2015

  • Li, Xiaoli; Sun, Chanjun; Zhou, Binxiong
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep17210

Tannin Structural Elucidation and Quantitative 31 P NMR Analysis. 2. Hydrolyzable Tannins and Proanthocyanidins
journal, September 2013

  • Melone, Federica; Saladino, Raffaele; Lange, Heiko
  • Journal of Agricultural and Food Chemistry, Vol. 61, Issue 39
  • DOI: 10.1021/jf401664a

On the Quantification of Lignin Hydroxyl Groups With 31 P and 13 C NMR Spectroscopy
journal, April 2015


Structural elucidation of tannins of spent coffee grounds by CP-MAS 13C NMR and MALDI-TOF MS
journal, July 2015


31P NMR in wood chemistry: A review of recent progress
journal, March 1995

  • Argyropoulos, D. S.
  • Research on Chemical Intermediates, Vol. 21, Issue 3-5
  • DOI: 10.1007/BF03052265

In Situ Determination of Lignin Phenolics and Wood Solubility in Imidazolium Chlorides Using 31 P NMR
journal, September 2009

  • King, Alistair W. T.; Zoia, Luca; Filpponen, Ilari
  • Journal of Agricultural and Food Chemistry, Vol. 57, Issue 18
  • DOI: 10.1021/jf901095w

Solving the interaction of electromagnetic wave with electron by VIM
journal, January 2015

  • Matinfar, M.; Mirzanezhad, S.; Ghasemi, M.
  • Journal of King Saud University - Science, Vol. 27, Issue 1
  • DOI: 10.1016/j.jksus.2014.03.001

Revealing the structure of bamboo lignin obtained by formic acid delignification at different pressure levels
journal, December 2017


Selective precipitation and characterization of lignin–carbohydrate complexes (LCCs) from Eucalyptus
journal, January 2018


31 P-NMR analysis of bio-oils obtained from the pyrolysis of biomass
journal, November 2010

  • David, Kasi; Kosa, Matyas; Williams, Alex
  • Biofuels, Vol. 1, Issue 6
  • DOI: 10.4155/bfs.10.57

Solution-state 2D NMR of Ball-milled Plant Cell Wall Gels in DMSO-d 6
journal, March 2008


Detailed Chemical Composition of Condensed Tannins via Quantitative 31 P NMR and HSQC Analyses: Acacia catechu , Schinopsis balansae , and Acacia mearnsii
journal, August 2016


Quantification of Lignin and Its Structural Features in Plant Biomass Using 13 C Lignin as Internal Standard for Pyrolysis-GC-SIM-MS
journal, October 2017


Application of FTIR spectroscopy to the characterization of archeological wood
journal, January 2016

  • Traoré, Mohamed; Kaal, Joeri; Martínez Cortizas, Antonio
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 153
  • DOI: 10.1016/j.saa.2015.07.108

Lignin Biosynthesis and Structure
journal, May 2010

  • Vanholme, R.; Demedts, B.; Morreel, K.
  • Plant Physiology, Vol. 153, Issue 3, p. 895-905
  • DOI: 10.1104/pp.110.155119

Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects
journal, November 2017

  • Tarabanko, Valery; Tarabanko, Nikolay
  • International Journal of Molecular Sciences, Vol. 18, Issue 11
  • DOI: 10.3390/ijms18112421

Milled Wood Lignin: A Linear Oligomer
journal, November 2011

  • Crestini, Claudia; Melone, Federica; Sette, Marco
  • Biomacromolecules, Vol. 12, Issue 11
  • DOI: 10.1021/bm200948r

Lignin Valorization: Improving Lignin Processing in the Biorefinery
journal, May 2014

  • Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.
  • Science, Vol. 344, Issue 6185, p. 1246843-1246843
  • DOI: 10.1126/science.1246843

2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins
journal, June 1995

  • Granata, Alessandro; Argyropoulos, Dimitris S.
  • Journal of Agricultural and Food Chemistry, Vol. 43, Issue 6
  • DOI: 10.1021/jf00054a023

A comparative C13 NMR study of polyflavonoid tannin extracts for phenolic polycondensates
journal, December 1993


Quantitative 31P NMR Spectroscopy of Lignins from Transgenic Poplars
journal, June 2001

  • Akim, Leonid G.; Argyropoulos, Dimitris S.; Jouanin, Lise
  • Holzforschung, Vol. 55, Issue 4
  • DOI: 10.1515/HF.2001.064

Quantitative 31P NMR analysis of solid wood offers an insight into the acetylation of its components
journal, November 2014


Lignin Analysis by Permanganate Oxidation. II. Lignins in Acidic Organosolv Pulps
journal, November 1999

  • Bose, Samar K.; Wilson, Kate L.; Hausch, Diane L.
  • Holzforschung, Vol. 53, Issue 6
  • DOI: 10.1515/HF.1999.100

31 P NMR Spectroscopy in Wood Chemistry Part V. Qualitative Analysis of Lignin Functional Groups
journal, June 1993

  • Argyropoulos, Dimitris S.; Bolker, Henry I.; Heitner, Cyril
  • Journal of Wood Chemistry and Technology, Vol. 13, Issue 2
  • DOI: 10.1080/02773819308020514

Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment
journal, September 2017


Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review
journal, May 2006

  • Mohan, Dinesh; Pittman,, Charles U.; Steele, Philip H.
  • Energy & Fuels, Vol. 20, Issue 3, p. 848-889
  • DOI: 10.1021/ef0502397

Toward Thermoplastic Lignin Polymers. Part 1. Selective Masking of Phenolic Hydroxyl Groups in Kraft Lignins via Methylation and Oxypropylation Chemistries
journal, December 2012

  • Sadeghifar, Hasan; Cui, Chengzhong; Argyropoulos, Dimitris S.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 51, p. 16713-16720
  • DOI: 10.1021/ie301848j

Whole plant cell wall characterization using solution-state 2D NMR
journal, August 2012


P NMR Spectroscopy in Wood Chemistry - Part III. Solid State 31 P NMR of Trimethyl Phosphite Derivatives of Chromophores in Mechanical Pulp
journal, January 1992


Application of 19 F NMR Spectroscopy for Content Determination of Fluorinated Pharmaceuticals
journal, January 2017

  • Okaru, Alex O.; Brunner, Tobias S.; Ackermann, Svenja M.
  • Journal of Analytical Methods in Chemistry, Vol. 2017
  • DOI: 10.1155/2017/9206297

Biomass accessibility analysis using electron tomography
journal, December 2015

  • Hinkle, Jacob D.; Ciesielski, Peter N.; Gruchalla, Kenny
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0395-8

Characterization of technical lignins by NMR spectroscopy: optimization of functional group analysis by 31P NMR spectroscopy
journal, August 2015

  • Korntner, Philipp; Sumerskii, Ivan; Bacher, Markus
  • Holzforschung, Vol. 69, Issue 6
  • DOI: 10.1515/hf-2014-0281

Review of NMR Characterization of Pyrolysis Oils
journal, August 2016


A novel quantitative 31 P NMR spectroscopic analysis of hydroxyl groups in lignosulfonic acids
journal, January 2018

  • Stücker, Alexander; Podschun, Jacob; Saake, Bodo
  • Analytical Methods, Vol. 10, Issue 28
  • DOI: 10.1039/C8AY01272E

31 P NMR Spectroscopy in Wood Chemistry. Part IV. Lignin Models: Spin Lattice Relaxation Times and Solvent Effects in 31 P NMR
journal, January 1993


Evidence for Complex Molecular Architectures for Solvent-Extracted Lignins
journal, April 2012

  • Harton, Shane E.; Pingali, Sai Venkatesh; Nunnery, Grady A.
  • ACS Macro Letters, Vol. 1, Issue 5
  • DOI: 10.1021/mz300045e

Determination of phenolic hydroxyl groups in residual lignin using a modified UV-method
journal, May 1999


Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5
journal, January 2010

  • Kim, Hoon; Ralph, John
  • Org. Biomol. Chem., Vol. 8, Issue 3
  • DOI: 10.1039/B916070A

The occurrence of tricin and its derivatives in plants
journal, January 2016

  • Li, Mi; Pu, Yunqiao; Yoo, Chang Geun
  • Green Chemistry, Vol. 18, Issue 6
  • DOI: 10.1039/C5GC03062E

Determination of Water Content in Olive Oil by 31 P NMR Spectroscopy
journal, March 2008

  • Hatzakis, Emmanuel; Dais, Photis
  • Journal of Agricultural and Food Chemistry, Vol. 56, Issue 6
  • DOI: 10.1021/jf073227n

The Effects on Lignin Structure of Overexpression of Ferulate 5-Hydroxylase in Hybrid Poplar 1
journal, April 2009

  • Stewart, Jaclyn J.; Akiyama, Takuya; Chapple, Clint
  • Plant Physiology, Vol. 150, Issue 2
  • DOI: 10.1104/pp.109.137059

Facile Quantitative Analysis of Hydroxyl End Groups of Poly(2,6-dimethyl-1,4-phenylene oxide)s by 31P NMR Spectroscopy
journal, October 1994

  • Chan, K. P.; Argyropoulos, D. S.; White, D. M.
  • Macromolecules, Vol. 27, Issue 22
  • DOI: 10.1021/ma00100a021

Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass
journal, January 2019


Chemical Transformations of Buddleja davidii Lignin during Ethanol Organosolv Pretreatment
journal, April 2010

  • Hallac, Bassem B.; Pu, Yunqiao; Ragauskas, Arthur J.
  • Energy & Fuels, Vol. 24, Issue 4
  • DOI: 10.1021/ef901556u

Elucidation of Lignin Structure by Quantitative 2D NMR
journal, June 2011

  • Sette, Marco; Wechselberger, Rainer; Crestini, Claudia
  • Chemistry - A European Journal, Vol. 17, Issue 34
  • DOI: 10.1002/chem.201003045

Lignins as macromonomers for polyurethane synthesis: A comparative study on hydroxyl group determination
journal, January 2008

  • Cateto, Carolina Andreia; Barreiro, Maria Filomena; Rodrigues, Alírio Egídio
  • Journal of Applied Polymer Science, Vol. 109, Issue 5
  • DOI: 10.1002/app.28393

Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields
journal, January 2006

  • Pan, Xuejun; Gilkes, Neil; Kadla, John
  • Biotechnology and Bioengineering, Vol. 94, Issue 5, p. 851-861
  • DOI: 10.1002/bit.20905

31 P NMR Chemical Shifts of Solvents and Products Impurities in Biomass Pretreatments
journal, November 2017


31P-N.m.r. spectroscopy in wood chemistry. Phosphite derivatives of carbohydrates
journal, November 1991


Phosphorus-31 NMR spectroscopic analysis of coal pyrolysis condensates and extracts for heteroatom functionalities possessing labile hydrogen
journal, November 1988

  • Wroblewski, A. E.; Lensink, C.; Markuszewski, R.
  • Energy & Fuels, Vol. 2, Issue 6
  • DOI: 10.1021/ef00012a008

Determination of Carbonyl Groups of Six Round Robin Lignins by Modified Oximation and FTIR Spectroscopy
journal, January 1998


3D Chemical Image using TOF-SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass
journal, October 2012

  • Jung, Seokwon; Foston, Marcus; Kalluri, Udaya C.
  • Angewandte Chemie International Edition, Vol. 51, Issue 48
  • DOI: 10.1002/anie.201205243

Determination of Arylglycerol-β-aryl Ethers and Other Linkages in Lignins Using DFRC/ 31 P NMR
journal, February 2001

  • Tohmura, Shin-ichiro; Argyropoulos, Dimitris S.
  • Journal of Agricultural and Food Chemistry, Vol. 49, Issue 2
  • DOI: 10.1021/jf010047j

Small-scale and automatable high-throughput compositional analysis of biomass
text, January 2010

  • DeMartini, Jaclyn D.; Studer, Michael Hans-Peter; Wyman, Charles E.
  • John Wiley & Sons
  • DOI: 10.24451/arbor.10128

3D Chemical Image using TOF-SIMS Revealing the Biopolymer Component Spatial and Lateral Distributions in Biomass
journal, October 2012

  • Jung, Seokwon; Foston, Marcus; Kalluri, Udaya C.
  • Angewandte Chemie, Vol. 124, Issue 48
  • DOI: 10.1002/ange.201205243

Proanthocyanidin Biosynthesis — Still More Questions than Answers?
journal, January 2006


Works referencing / citing this record:

Accelerating Thermal Stabilization by Pyrolytic Lignin for Partially Bio‐Based Carbon Fiber Precursor
journal, October 2019

  • Shi, Hui; Ouyang, Qin; Wang, Jingyu
  • Macromolecular Materials and Engineering, Vol. 305, Issue 1
  • DOI: 10.1002/mame.201900618

Characterization of Eucalyptus nitens Lignins Obtained by Biorefinery Methods Based on Ionic Liquids
journal, January 2020


A sustainable wood biorefinery for low–carbon footprint chemicals production
journal, February 2020

  • Liao, Yuhe; Koelewijn, Steven-Friso; Van den Bossche, Gil
  • Science, Vol. 367, Issue 6484
  • DOI: 10.1126/science.aau1567