skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells

Abstract

Ruddlesden–Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA) 2(MA) 3Pb 4I 13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI 2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA) 2(MA) 3Pb 4I 13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden–Popper perovskite structure and further improve optoelectronic and solar cell devices.

Authors:
 [1];  [2];  [3];  [3]; ORCiD logo [4]; ORCiD logo [4];  [3];  [3];  [5];  [6]; ORCiD logo [4];  [3];  [2];  [7]
  1. Shaanxi Normal Univ., Xi'an (China); Chinese Academy of Sciences, Dalian (China)
  2. King Abdullah Univ. of Science and Technology (KAUST), Thuwal (Saudi Arabia)
  3. Shaanxi Normal Univ., Xi'an (China)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Cornell Univ., Ithaca, NY (United States). Cornell High Energy Synchrotron Source (CHESS)
  6. Northwestern Univ., Evanston, IL (United States)
  7. (Frank) [Shaanxi Normal Univ., Xi'an (China); Chinese Academy of Sciences, Dalian (China)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1558068
Report Number(s):
LA-UR-19-22960
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 21; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Material Science

Citation Formats

Zhang, Xu, Munir, Rahim, Zhuo, Xu, Liu, Yucheng, Tsai, Hsinhan, Nie, Wanyi, Li, Jianbo, Niu, Tianqi, Smilgies, Detlef-M., Kanatzidis, Mercouri G., Mohite, Aditya, Zhao, Kui, Amassian, Aram, and Liu, Shengzhong. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells. United States: N. p., 2018. Web. doi:10.1002/adma.201707166.
Zhang, Xu, Munir, Rahim, Zhuo, Xu, Liu, Yucheng, Tsai, Hsinhan, Nie, Wanyi, Li, Jianbo, Niu, Tianqi, Smilgies, Detlef-M., Kanatzidis, Mercouri G., Mohite, Aditya, Zhao, Kui, Amassian, Aram, & Liu, Shengzhong. Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells. United States. doi:10.1002/adma.201707166.
Zhang, Xu, Munir, Rahim, Zhuo, Xu, Liu, Yucheng, Tsai, Hsinhan, Nie, Wanyi, Li, Jianbo, Niu, Tianqi, Smilgies, Detlef-M., Kanatzidis, Mercouri G., Mohite, Aditya, Zhao, Kui, Amassian, Aram, and Liu, Shengzhong. Mon . "Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells". United States. doi:10.1002/adma.201707166. https://www.osti.gov/servlets/purl/1558068.
@article{osti_1558068,
title = {Phase Transition Control for High Performance Ruddlesden-Popper Perovskite Solar Cells},
author = {Zhang, Xu and Munir, Rahim and Zhuo, Xu and Liu, Yucheng and Tsai, Hsinhan and Nie, Wanyi and Li, Jianbo and Niu, Tianqi and Smilgies, Detlef-M. and Kanatzidis, Mercouri G. and Mohite, Aditya and Zhao, Kui and Amassian, Aram and Liu, Shengzhong},
abstractNote = {Ruddlesden–Popper reduced-dimensional hybrid perovskite (RDP) semiconductors have attracted significant attention recently due to their promising stability and excellent optoelectronic properties. Here, the RDP crystallization mechanism in real time from liquid precursors to the solid film is investigated, and how the phase transition kinetics influences phase purity, quantum well orientation, and photovoltaic performance is revealed. An important template-induced nucleation and growth of the desired (BA)2(MA)3Pb4I13 phase, which is achieved only via direct crystallization without formation of intermediate phases, is observed. As such, the thermodynamically preferred perpendicular crystal orientation and high phase purity are obtained. At low temperature, the formation of intermediate phases, including PbI2 crystals and solvate complexes, slows down intercalation of ions and increases nucleation barrier, leading to formation of multiple RDP phases and orientation randomness. These insights enable to obtain high quality (BA)2(MA)3Pb4I13 films with preferentially perpendicular quantum well orientation, high phase purity, smooth film surface, and improved optoelectronic properties. The resulting devices exhibit high power conversion efficiency of 12.17%. This work should help guide the perovskite community to better control Ruddlesden–Popper perovskite structure and further improve optoelectronic and solar cell devices.},
doi = {10.1002/adma.201707166},
journal = {Advanced Materials},
number = 21,
volume = 30,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 68 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells
journal, January 2014

  • Sun, Shuangyong; Salim, Teddy; Mathews, Nripan
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE43161D

Sequential deposition as a route to high-performance perovskite-sensitized solar cells
journal, July 2013

  • Burschka, Julian; Pellet, Norman; Moon, Soo-Jin
  • Nature, Vol. 499, Issue 7458, p. 316-319
  • DOI: 10.1038/nature12340

120 mm single-crystalline perovskite and wafers: towards viable applications
journal, July 2017


Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells
journal, January 2014

  • Marchioro, Arianna; Teuscher, Joël; Friedrich, Dennis
  • Nature Photonics, Vol. 8, Issue 3
  • DOI: 10.1038/nphoton.2013.374

Two-Inch-Sized Perovskite CH 3 NH 3 PbX 3 (X = Cl, Br, I) Crystals: Growth and Characterization
journal, August 2015


Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals
journal, January 2015


Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
journal, September 2014


Perovskite Photodetectors Operating in Both Narrowband and Broadband Regimes
journal, July 2016

  • Saidaminov, Makhsud I.; Haque, Md. Azimul; Savoie, Maxime
  • Advanced Materials, Vol. 28, Issue 37
  • DOI: 10.1002/adma.201601235

Solution Coating of Superior Large-Area Flexible Perovskite Thin Films with Controlled Crystal Packing
journal, May 2017

  • Li, Jianbo; Liu, Yucheng; Ren, Xiaodong
  • Advanced Optical Materials, Vol. 5, Issue 11
  • DOI: 10.1002/adom.201700102

Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors
journal, April 2015

  • Zhu, Haiming; Fu, Yongping; Meng, Fei
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4271

Laser cooling of organic–inorganic lead halide perovskites
journal, December 2015


Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing
journal, March 2017


Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable Large-Area Solar Cell
journal, April 2016


Nanostructuring Mixed-Dimensional Perovskites: A Route Toward Tunable, Efficient Photovoltaics
journal, March 2016

  • Koh, Teck Ming; Shanmugam, Vignesh; Schlipf, Johannes
  • Advanced Materials, Vol. 28, Issue 19
  • DOI: 10.1002/adma.201506141

Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design
journal, March 2016


Ligand-Stabilized Reduced-Dimensionality Perovskites
journal, February 2016

  • Quan, Li Na; Yuan, Mingjian; Comin, Riccardo
  • Journal of the American Chemical Society, Vol. 138, Issue 8
  • DOI: 10.1021/jacs.5b11740

Graphene: An Emerging Electronic Material
journal, August 2012

  • Weiss, Nathan O.; Zhou, Hailong; Liao, Lei
  • Advanced Materials, Vol. 24, Issue 43
  • DOI: 10.1002/adma.201201482

Role of the Seeding Promoter in MoS 2 Growth by Chemical Vapor Deposition
journal, January 2014

  • Ling, Xi; Lee, Yi-Hsien; Lin, Yuxuan
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4033704

Black phosphorus field-effect transistors
journal, March 2014


Structure and optical properties of lead iodide based two-dimensional perovskite compounds containing fluorophenethylamines
journal, November 2004


High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells
journal, July 2016

  • Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe
  • Nature, Vol. 536, Issue 7616
  • DOI: 10.1038/nature18306

Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites
journal, March 2017


Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance
journal, May 2017

  • Liao, Yuqin; Liu, Hefei; Zhou, Wenjia
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01815

Thin Films and Solar Cells Based on Semiconducting Two-Dimensional Ruddlesden–Popper (CH 3 (CH 2 ) 3 NH 3 ) 2 (CH 3 NH 3 ) n −1 Sn n I 3 n +1 Perovskites
journal, April 2017


Stable high efficiency two-dimensional perovskite solar cells via cesium doping
journal, January 2017

  • Zhang, Xu; Ren, Xiaodong; Liu, Bin
  • Energy & Environmental Science, Vol. 10, Issue 10
  • DOI: 10.1039/C7EE01145H

A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability
journal, September 2014

  • Smith, Ian C.; Hoke, Eric T.; Solis-Ibarra, Diego
  • Angewandte Chemie International Edition, Vol. 53, Issue 42
  • DOI: 10.1002/anie.201406466

2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications
journal, June 2015

  • Cao, Duyen H.; Stoumpos, Constantinos C.; Farha, Omar K.
  • Journal of the American Chemical Society, Vol. 137, Issue 24
  • DOI: 10.1021/jacs.5b03796

Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells
journal, January 2016

  • Safdari, Majid; Svensson, Per H.; Hoang, Minh Tam
  • Journal of Materials Chemistry A, Vol. 4, Issue 40
  • DOI: 10.1039/C6TA05055G

Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material
journal, May 2016


Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells
journal, January 2016


Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells
journal, January 2014

  • Seo, Jangwon; Park, Sangman; Chan Kim, Young
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE01216J

High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
journal, May 2015


Parameters Affecting IV Hysteresis of CH 3 NH 3 PbI 3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO 2 Layer
journal, August 2014

  • Kim, Hui-Seon; Park, Nam-Gyu
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 17
  • DOI: 10.1021/jz501392m

In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells
journal, January 2016

  • Aguiar, Jeffery A.; Wozny, Sarah; Holesinger, Terry G.
  • Energy & Environmental Science, Vol. 9, Issue 7
  • DOI: 10.1039/C6EE01079B

Monitoring the Phase Formation of Coevaporated Lead Halide Perovskite Thin Films by in Situ X-ray Diffraction
journal, September 2014

  • Pistor, Paul; Borchert, Juliane; Fränzel, Wolfgang
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 19
  • DOI: 10.1021/jz5017312

Hybrid Perovskite Thin-Film Photovoltaics: In Situ Diagnostics and Importance of the Precursor Solvate Phases
journal, November 2016

  • Munir, Rahim; Sheikh, Arif D.; Abdelsamie, Maged
  • Advanced Materials, Vol. 29, Issue 2
  • DOI: 10.1002/adma.201604113

Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution
journal, January 2016

  • Nenon, David P.; Christians, Jeffrey A.; Wheeler, Lance M.
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C6EE01047D

Interface engineering of highly efficient perovskite solar cells
journal, July 2014


Understanding Film Formation Morphology and Orientation in High Member 2D Ruddlesden-Popper Perovskites for High-Efficiency Solar Cells
journal, September 2017

  • Soe, Chan Myae Myae; Nie, Wanyi; Stoumpos, Constantinos C.
  • Advanced Energy Materials, Vol. 8, Issue 1
  • DOI: 10.1002/aenm.201700979

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
journal, July 2014

  • Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan
  • Nature Materials, Vol. 13, Issue 9, p. 897-903
  • DOI: 10.1038/nmat4014

Making and Breaking of Lead Halide Perovskites
journal, January 2016

  • Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.
  • Accounts of Chemical Research, Vol. 49, Issue 2
  • DOI: 10.1021/acs.accounts.5b00455

High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization
journal, July 2015

  • Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth
  • Nature Communications, Vol. 6, Article No. 7586
  • DOI: 10.1038/ncomms8586

The Role of Surface Tension in the Crystallization of Metal Halide Perovskites
journal, July 2017


Two-Dimensional Semiconductor Nanocrystals: Properties, Templated Formation, and Magic-Size Nanocluster Intermediates
journal, December 2014

  • Wang, Fudong; Wang, Yuanyuan; Liu, Yi-Hsin
  • Accounts of Chemical Research, Vol. 48, Issue 1
  • DOI: 10.1021/ar500286j

Observation of Internal Photoinduced Electron and Hole Separation in Hybrid Two-Dimentional Perovskite Films
journal, January 2017

  • Liu, Junxue; Leng, Jing; Wu, Kaifeng
  • Journal of the American Chemical Society, Vol. 139, Issue 4
  • DOI: 10.1021/jacs.6b12581

    Works referencing / citing this record:

    Ultrahigh phase transition temperature in a metal–halide perovskite-type material containing unprecedented hydrogen bonding interactions
    journal, January 2019

    • Hua, Xiu-Ni; Gao, Ji-Xing; Chen, Xiao-Gang
    • Dalton Transactions, Vol. 48, Issue 19
    • DOI: 10.1039/c9dt00945k

    Enhanced Charge Transport by Incorporating Formamidinium and Cesium Cations into Two-Dimensional Perovskite Solar Cells
    journal, July 2019

    • Gao, Liguo; Zhang, Fei; Chen, Xihan
    • Angewandte Chemie International Edition, Vol. 58, Issue 34
    • DOI: 10.1002/anie.201905690

    Factors determining the vertical orientation of two-dimensional perovskites
    journal, January 2019

    • Arai, R.; Yoshizawa-Fujita, M.; Takeoka, Y.
    • CrystEngComm, Vol. 21, Issue 31
    • DOI: 10.1039/c9ce00631a