DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO

Abstract

Kinetic-energy dependent reactions of Th+ with N2 and NO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with NO is observed to be exothermic and barrierless with a reaction efficiency at low energies of 0.91 ± 0.18. Formation of ThN+ in the reactions of Th+ with N2 and NO is endothermic in both cases. The kinetic-energy dependent cross sections for formation of this product ion were evaluated to determine a 0 K bond dissociation energy (BDE) of D0(Th+–N) = 6.51 ± 0.08 eV, the first direct measurement of this BDE. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to CCSDTQ for ThN and ThN+, as well as more approximate CCSD(T) calculations where a semiempirical model was used to estimate spin-orbit energy contributions. As a result, the ThN+ BDE is found to be larger than those of the transition metal congeners, TiN+ along with estimated values for ZrN+ and HfN+, believed to be a result of the actinide contraction.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]
  1. Univ. of Utah, Salt Lake City, UT (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Univ. of Utah, Salt Lake City, UT (United States)
  3. Washington State Univ., Pullman, WA (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Utah, Salt Lake City, UT (United States); Washington State Univ., Pullman, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1557672
Alternate Identifier(s):
OSTI ID: 1543055; OSTI ID: 1593392; OSTI ID: 1658387
Grant/Contract Number:  
SC0008501; SC0012249; AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 151; Journal Issue: 3; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Actinide chemistry; bond activation; gas-phase ion chemistry; tandem mass spectrometry; thermodynamics

Citation Formats

Cox, Richard M., Kafle, Arjun, Armentrout, P. B., and Peterson, Kirk A. Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO. United States: N. p., 2019. Web. doi:10.1063/1.5111534.
Cox, Richard M., Kafle, Arjun, Armentrout, P. B., & Peterson, Kirk A. Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO. United States. https://doi.org/10.1063/1.5111534
Cox, Richard M., Kafle, Arjun, Armentrout, P. B., and Peterson, Kirk A. Thu . "Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO". United States. https://doi.org/10.1063/1.5111534. https://www.osti.gov/servlets/purl/1557672.
@article{osti_1557672,
title = {Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO},
author = {Cox, Richard M. and Kafle, Arjun and Armentrout, P. B. and Peterson, Kirk A.},
abstractNote = {Kinetic-energy dependent reactions of Th+ with N2 and NO are studied using a guided ion beam tandem mass spectrometer. The formation of ThO+ in the reaction of Th+ with NO is observed to be exothermic and barrierless with a reaction efficiency at low energies of 0.91 ± 0.18. Formation of ThN+ in the reactions of Th+ with N2 and NO is endothermic in both cases. The kinetic-energy dependent cross sections for formation of this product ion were evaluated to determine a 0 K bond dissociation energy (BDE) of D0(Th+–N) = 6.51 ± 0.08 eV, the first direct measurement of this BDE. Additionally, the reactions were explored by quantum chemical calculations, including a full Feller-Peterson-Dixon composite approach with correlation contributions up to CCSDTQ for ThN and ThN+, as well as more approximate CCSD(T) calculations where a semiempirical model was used to estimate spin-orbit energy contributions. As a result, the ThN+ BDE is found to be larger than those of the transition metal congeners, TiN+ along with estimated values for ZrN+ and HfN+, believed to be a result of the actinide contraction.},
doi = {10.1063/1.5111534},
journal = {Journal of Chemical Physics},
number = 3,
volume = 151,
place = {United States},
year = {Thu Jul 18 00:00:00 EDT 2019},
month = {Thu Jul 18 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Absolute cross sections for reaction of Th+ + N2 as a function of kinetic energy in the laboratory (upper x-axis) and center-of-mass (lower x-axis) frames. Lines show the model cross sections of Eq. (2), convoluted over the reactant internal and kinetic energy distributions (solid lines) and unconvoluted (dashedmore » lines). The inset shows the data and models expanded by a factor of 10 and offset from zero by 0.2 Å2. The arrow shows D0(N–N) = 9.75 eV.« less

Save / Share:

Works referenced in this record:

Handbook of Basic Atomic Spectroscopic Data
journal, December 2005

  • Sansonetti, J. E.; Martin, W. C.
  • Journal of Physical and Chemical Reference Data, Vol. 34, Issue 4
  • DOI: 10.1063/1.1800011

Quadratic configuration interaction. A general technique for determining electron correlation energies
journal, November 1987

  • Pople, John A.; Head‐Gordon, Martin; Raghavachari, Krishnan
  • The Journal of Chemical Physics, Vol. 87, Issue 10
  • DOI: 10.1063/1.453520

An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations
journal, December 1988

  • Scuseria, Gustavo E.; Janssen, Curtis L.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 89, Issue 12
  • DOI: 10.1063/1.455269

Characterization of gas-phase thorium nitride
journal, April 2019

  • Le, Anh T.; Nakhate, Sanjay G.; Nguyen, Duc-Trung
  • The Journal of Chemical Physics, Vol. 150, Issue 14
  • DOI: 10.1063/1.5089136

Spectroscopy of the ground and low-lying excited states of ThO+
journal, February 2006

  • Goncharov, Vasiliy; Heaven, Michael C.
  • The Journal of Chemical Physics, Vol. 124, Issue 6
  • DOI: 10.1063/1.2167356

Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD)?
journal, April 1989

  • Scuseria, Gustavo E.; Schaefer, Henry F.
  • The Journal of Chemical Physics, Vol. 90, Issue 7
  • DOI: 10.1063/1.455827

Reactions of Th + + H 2 , D 2 , and HD Studied by Guided Ion Beam Tandem Mass Spectrometry and Quantum Chemical Calculations
journal, October 2015

  • Cox, Richard M.; Armentrout, P. B.; de Jong, Wibe A.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcb.5b08008

Coupled cluster theory for high spin, open shell reference wave functions
journal, October 1993

  • Knowles, Peter J.; Hampel, Claudia; Werner, Hans‐Joachim
  • The Journal of Chemical Physics, Vol. 99, Issue 7
  • DOI: 10.1063/1.465990

A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples
journal, February 1982

  • Purvis, George D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 76, Issue 4
  • DOI: 10.1063/1.443164

An infrared spectroscopic and quasirelativistic theoretical study of the coordination and activation of dinitrogen by thorium and uranium atoms
journal, May 1998

  • Kushto, Gary P.; Souter, Philip F.; Andrews, Lester
  • The Journal of Chemical Physics, Vol. 108, Issue 17
  • DOI: 10.1063/1.476129

Kinetic energy dependence of Al + +O 2 →AlO + +O
journal, February 1986

  • Weber, M. E.; Elkind, J. L.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 84, Issue 3
  • DOI: 10.1063/1.450497

Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide
journal, May 1994

  • Küchle, W.; Dolg, M.; Stoll, H.
  • The Journal of Chemical Physics, Vol. 100, Issue 10
  • DOI: 10.1063/1.466847

Reactions of Hf+, Ta+, and W+ with O2 and CO: Metal carbide and metal oxide cation bond energies
journal, February 2009

  • Hinton, Christopher S.; Li, Fengxia; Armentrout, P. B.
  • International Journal of Mass Spectrometry, Vol. 280, Issue 1-3
  • DOI: 10.1016/j.ijms.2008.08.025

A Comparative Study of Oxo-Ligand Effects in the Gas-Phase Chemistry of Atomic Lanthanide and Actinide Cations
journal, July 1997

  • Cornehl, Hans H.; Wesendrup, Ralf; Diefenbach, Martin
  • Chemistry - A European Journal, Vol. 3, Issue 7
  • DOI: 10.1002/chem.19970030716

Activation of Water by Thorium Cation: A Guided Ion Beam and Quantum Chemical Study
journal, April 2019

  • Cox, Richard M.; Armentrout, P. B.
  • Journal of The American Society for Mass Spectrometry, Vol. 30, Issue 10
  • DOI: 10.1007/s13361-019-02162-1

Two-Color Laser Resonance Ionization Spectroscopy of Zirconium Atoms
journal, October 2017

  • Hasegawa, Shuichi; Nagamoto, Daisuke
  • Journal of the Physical Society of Japan, Vol. 86, Issue 10
  • DOI: 10.7566/jpsj.86.104302

Explicitly correlated composite thermochemistry of transition metal species
journal, September 2013

  • Bross, David H.; Hill, J. Grant; Werner, H. -J.
  • The Journal of Chemical Physics, Vol. 139, Issue 9
  • DOI: 10.1063/1.4818725

Ammonia activation by vanadium(1+): electronic and translational energy dependence
journal, January 1990

  • Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 94, Issue 1
  • DOI: 10.1021/j100364a034

Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium
journal, November 2009

  • Marçalo, Joaquim; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 45
  • DOI: 10.1021/jp904862a

Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267]
journal, December 2005


Resonant two-photon ionization spectroscopy of jet-cooled OsN: 520–418 nm
journal, September 2011

  • Garcia, Maria A.; Morse, Michael D.
  • The Journal of Chemical Physics, Vol. 135, Issue 11
  • DOI: 10.1063/1.3633694

Collision-induced dissociation of UO+ and UO+2
journal, August 1980


THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS
journal, February 2014

  • Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.
  • The Astrophysical Journal Supplement Series, Vol. 211, Issue 1
  • DOI: 10.1088/0067-0049/211/1/4

Reactions of Y + , Zr + , Nb + , and Mo + with H 2 , HD, and D 2
journal, January 1996

  • Sievers, Michael R.; Chen, Yu-Min; Elkind, J. L.
  • The Journal of Physical Chemistry, Vol. 100, Issue 1
  • DOI: 10.1021/jp952231b

Translational energy dependence of Ar + +XY→ArX + +Y (XY=H 2 ,D 2 ,HD) from thermal to 30 eV c.m.
journal, July 1985

  • Ervin, Kent M.; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 83, Issue 1
  • DOI: 10.1063/1.449799

Bond energies of ThO + and ThC + : A guided ion beam and quantum chemical investigation of the reactions of thorium cation with O 2 and CO
journal, May 2016

  • Cox, Richard M.; Citir, Murat; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 144, Issue 18
  • DOI: 10.1063/1.4948812

Guided ion beam study of collision-induced dissociation dynamics: integral and differential cross sections
journal, July 2001

  • Muntean, Felician; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 115, Issue 3
  • DOI: 10.1063/1.1371958

Reactions of Cu+(1S and 3D) with O2, CO, CO2, N2, NO, N2O, and NO2 studied by guided ion beam mass spectrometry
journal, March 1999


Translational energy dependence of O+(4S) + H2(D2, HD) → OH+(OD+) + H(D) from thermal energies to 30 eV c.m.
journal, December 1987

  • Burley, J. D.; Ervin, Kent M.; Armentrout, P. B.
  • International Journal of Mass Spectrometry and Ion Processes, Vol. 80
  • DOI: 10.1016/0168-1176(87)87027-1

Gas-Phase Reactions of Hydrocarbons with An + and AnO + (An = Th, Pa, U, Np, Pu, Am, Cm):  The Active Role of 5f Electrons in Organoprotactinium Chemistry
journal, July 2007

  • Gibson, John K.; Haire, Richard G.; Marçalo, Joaquim
  • Organometallics, Vol. 26, Issue 16
  • DOI: 10.1021/om700329h

Theory of translationally driven reactions
journal, April 1979

  • Chesnavich, Walter J.; Bowers, Michael T.
  • The Journal of Physical Chemistry, Vol. 83, Issue 8
  • DOI: 10.1021/j100471a004

Role of Atomic Electronics in f-Element Bond Formation:  Bond Energies of Lanthanide and Actinide Oxide Molecules
journal, October 2003

  • Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 39
  • DOI: 10.1021/jp035003n

Bond Energy of IrO + : Guided Ion-Beam and Theoretical Studies of the Reaction of Ir + ( 5 F) with O 2
journal, July 2013

  • Armentrout, P. B.; Li, Feng-Xia
  • The Journal of Physical Chemistry A, Vol. 117, Issue 33
  • DOI: 10.1021/jp4063143

The bond energy of ReO + : Guided ion-beam and theoretical studies of the reaction of Re + ( 7 S) with O 2
journal, August 2013

  • Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 139, Issue 8
  • DOI: 10.1063/1.4818642

An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian
journal, February 1994

  • Dyall, Kenneth G.
  • The Journal of Chemical Physics, Vol. 100, Issue 3
  • DOI: 10.1063/1.466508

The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions
journal, October 1990

  • Watts, John D.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 93, Issue 8
  • DOI: 10.1063/1.459002

Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas–Kroll–Hess transformation up to arbitrary order
journal, January 2004

  • Reiher, Markus; Wolf, Alexander
  • The Journal of Chemical Physics, Vol. 121, Issue 22
  • DOI: 10.1063/1.1818681

Identification and dissociation energy of gaseous hafnium mononitride
journal, January 1974

  • Kohl, Fred J.; Stearns, Carl A.
  • The Journal of Physical Chemistry, Vol. 78, Issue 3
  • DOI: 10.1021/j100596a016

Search for effective local model potentials for simulation of quantum electrodynamic effects in relativistic calculations
journal, March 2003

  • Pyykk , Pekka; Zhao, Li-Bo
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 36, Issue 8
  • DOI: 10.1088/0953-4075/36/8/302

Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr
journal, August 2017

  • Feng, Rulin; Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 147, Issue 8
  • DOI: 10.1063/1.4994725

Relativistic Small-Core Pseudopotentials for Actinium, Thorium, and Protactinium
journal, March 2014

  • Weigand, Anna; Cao, Xiaoyan; Hangele, Tim
  • The Journal of Physical Chemistry A, Vol. 118, Issue 13
  • DOI: 10.1021/jp500215z

Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets
journal, January 2001

  • de Jong, W. A.; Harrison, R. J.; Dixon, D. A.
  • The Journal of Chemical Physics, Vol. 114, Issue 1
  • DOI: 10.1063/1.1329891

Reactions of U+ and UO+ with O2, CO, CO2, COS, CS2 and D2O
journal, August 1980


Gas-Phase Oxidation and Nitration of First-, Second-, and Third-Row Atomic Cations in Reactions with Nitrous Oxide:  Periodicities in Reactivity
journal, July 2004

  • Lavrov, Vitali V.; Blagojevic, Voislav; Koyanagi, Gregory K.
  • The Journal of Physical Chemistry A, Vol. 108, Issue 26
  • DOI: 10.1021/jp049931d

Activation of CH 4 by Gas-Phase Zr + and the Thermochemistry of Zr−Ligand Complexes
journal, June 2003

  • Armentrout, P. B.; Sievers, M. R.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 22
  • DOI: 10.1021/jp027820d

State-Specific Reactions of Fe+(a6D,a4F) with D2O and Reactions of FeO+ with D2
journal, June 1994

  • Clemmer, D. E.; Chen, Yu-Min; Khan, Farooq A.
  • The Journal of Physical Chemistry, Vol. 98, Issue 26
  • DOI: 10.1021/j100077a017

Segmented contraction scheme for small-core actinide pseudopotential basis sets
journal, March 2004


Gas-Phase Oxidation of Cm + and Cm 2+ − Thermodynamics of Neutral and Ionized CmO
journal, November 2008

  • Gibson, John K.; Haire, Richard G.; Santos, Marta
  • The Journal of Physical Chemistry A, Vol. 112, Issue 45
  • DOI: 10.1021/jp8047899

Endothermic reactions of uranium ions with N 2 , D 2 , and CD 4
journal, May 1977

  • Armentrout, P. B.; Hodges, R. V.; Beauchamp, J. L.
  • The Journal of Chemical Physics, Vol. 66, Issue 10
  • DOI: 10.1063/1.433678

Spectroscopy and Structure of the Simplest Actinide Bonds
journal, October 2014

  • Heaven, Michael C.; Barker, Beau J.; Antonov, Ivan O.
  • The Journal of Physical Chemistry A, Vol. 118, Issue 46
  • DOI: 10.1021/jp507283n

The full CCSDT model for molecular electronic structure
journal, June 1987

  • Noga, Jozef; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 86, Issue 12
  • DOI: 10.1063/1.452353

Gas-Phase Chemistry of Bare and Oxo-Ligated Protactinium Ions:  A Contribution to a Systematic Understanding of Actinide Chemistry
journal, November 2002

  • Gibson, John K.; Haire, Richard G.
  • Inorganic Chemistry, Vol. 41, Issue 22
  • DOI: 10.1021/ic025683t

Ammonia activation by scandium(1+) and titanium(1+): electronic and translational energy dependence
journal, April 1990

  • Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 94, Issue 7
  • DOI: 10.1021/j100370a051

Gaseous Metal Nitrides. II. The Dissociation Energy, Heat of Sublimation, and Heat of Formation of Zirconium Mononitride
journal, July 1968

  • Gingerich, Karl A.
  • The Journal of Chemical Physics, Vol. 49, Issue 1
  • DOI: 10.1063/1.1669799

Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC
journal, March 2012

  • Park, Young-Choon; Lim, Ivan S.; Lee, Yoon-Sup
  • Bulletin of the Korean Chemical Society, Vol. 33, Issue 3
  • DOI: 10.5012/bkcs.2012.33.3.803

How accurate are electronic structure methods for actinoid chemistry?
journal, March 2011

  • Averkiev, Boris B.; Mantina, Manjeera; Valero, Rosendo
  • Theoretical Chemistry Accounts, Vol. 129, Issue 3-5
  • DOI: 10.1007/s00214-011-0913-0

NUO+, a New Species Isoelectronic to the Uranyl Dication UO22+
journal, April 1995


Doppler Broadening in Beam Experiments
journal, September 1971

  • Chantry, P. J.
  • The Journal of Chemical Physics, Vol. 55, Issue 6
  • DOI: 10.1063/1.1676489

Ab initio total atomization energies of small molecules — towards the basis set limit
journal, September 1996


Mechanistic Aspects of the Reaction of Th + and Th 2+ with Water in the Gas Phase
journal, March 2008

  • Mazzone, Gloria; Michelini, Maria del Carmen; Russo, Nino
  • Inorganic Chemistry, Vol. 47, Issue 6
  • DOI: 10.1021/ic701789n

Metal oxide and carbide thermochemistry of Y + , Zr + , Nb + , and Mo +
journal, October 1996

  • Sievers, M. R.; Chen, Yu‐Min; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 105, Issue 15
  • DOI: 10.1063/1.472485

Higher excitations in coupled-cluster theory
journal, August 2001

  • Kállay, Mihály; Surján, Péter R.
  • The Journal of Chemical Physics, Vol. 115, Issue 7
  • DOI: 10.1063/1.1383290

Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy
journal, June 1997

  • Köhler, S.; Deiβenberger, R.; Eberhardt, K.
  • Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 52, Issue 6
  • DOI: 10.1016/s0584-8547(96)01670-9

Reaction mechanisms and thermochemistry of vanadium ions with ethane, ethene and ethyne
journal, April 1986

  • Aristov, N.; Armentrout, Peter B.
  • Journal of the American Chemical Society, Vol. 108, Issue 8
  • DOI: 10.1021/ja00268a017

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Quantum electrodynamical corrections to the fine structure of helium
journal, January 1974


Mass spectrometric studies of gaseous ThO and ThO 2
journal, August 1974

  • Hildenbrand, D. L.; Murad, Edmond
  • The Journal of Chemical Physics, Vol. 61, Issue 3
  • DOI: 10.1063/1.1682000

Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions
journal, May 1992

  • Kendall, Rick A.; Dunning, Thom H.; Harrison, Robert J.
  • The Journal of Chemical Physics, Vol. 96, Issue 9
  • DOI: 10.1063/1.462569

Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
journal, January 1980

  • Krishnan, R.; Binkley, J. S.; Seeger, R.
  • The Journal of Chemical Physics, Vol. 72, Issue 1
  • DOI: 10.1063/1.438955

Properties of ThF x from Infrared Spectra in Solid Argon and Neon with Supporting Electronic Structure and Thermochemical Calculations
journal, March 2014

  • Thanthiriwatte, K. Sahan; Wang, Xuefeng; Andrews, Lester
  • The Journal of Physical Chemistry A, Vol. 118, Issue 11
  • DOI: 10.1021/jp412818r

Dehydrogenation of Methane by Gas-Phase Th, Th + , and Th 2+ : Theoretical Insights into Actinide Chemistry
journal, September 2010

  • de Almeida, K. J.; Duarte, H. A.
  • Organometallics, Vol. 29, Issue 17
  • DOI: 10.1021/om100156r

The coupled‐cluster single, double, triple, and quadruple excitation method
journal, September 1992

  • Kucharski, Stanislaw A.; Bartlett, Rodney J.
  • The Journal of Chemical Physics, Vol. 97, Issue 6
  • DOI: 10.1063/1.463930

Activation of CH 4 by Th + as Studied by Guided Ion Beam Mass Spectrometry and Quantum Chemistry
journal, March 2015


Probing actinide electronic structure using fluorescence and multi-photon ionization spectroscopy
journal, January 2006

  • Heaven, Michael C.
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 39
  • DOI: 10.1039/b607486c

Total Collision Cross Sections for the Interaction of Atomic Beams of Alkali Metals with Gases
journal, December 1959

  • Rothe, Erhard W.; Bernstein, Richard B.
  • The Journal of Chemical Physics, Vol. 31, Issue 6
  • DOI: 10.1063/1.1730662

Methane activation by titanium(1+): electronic and translational energy dependence
journal, March 1988

  • Sunderlin, L. S.; Armentrout, P. B.
  • The Journal of Physical Chemistry, Vol. 92, Issue 5
  • DOI: 10.1021/j100316a040

FTICR-MS study of the gas-phase thermochemistry of americium oxides
journal, August 2003

  • Santos, Marta; Marçalo, Joaquim; Leal, João Paulo
  • International Journal of Mass Spectrometry, Vol. 228, Issue 2-3
  • DOI: 10.1016/s1387-3806(03)00138-6

Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for 20 Molecules
journal, February 2017

  • Cheng, Lan; Gauss, Jürgen; Ruscic, Branko
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 3
  • DOI: 10.1021/acs.jctc.6b00970

Prediction of Bond Dissociation Energies/Heats of Formation for Diatomic Transition Metal Compounds: CCSD(T) Works
journal, January 2017

  • Fang, Zongtang; Vasiliu, Monica; Peterson, Kirk A.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 3
  • DOI: 10.1021/acs.jctc.6b00971

Activation of Ethane C−H and C−C Bonds by Gas Phase Th + and U + : A Theoretical Study
journal, December 2009

  • Di Santo, E.; Michelini, M. C.; Russo, N.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 52
  • DOI: 10.1021/jp9048154

Ionization Energies for the Actinide Mono- and Dioxides Series, from Th to Cm: Theory versus Experiment
journal, May 2010

  • Infante, Ivan; Kovacs, Attila; Macchia, Giovanni La
  • The Journal of Physical Chemistry A, Vol. 114, Issue 19
  • DOI: 10.1021/jp1016328

Collision‐induced dissociation of Fe + n ( n =2–10) with Xe: Ionic and neutral iron binding energies
journal, May 1989

  • Loh, S. K.; Hales, David A.; Lian, Li
  • The Journal of Chemical Physics, Vol. 90, Issue 10
  • DOI: 10.1063/1.456452

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Integral cross sections for ion—molecule reactions. I. The guided beam technique
journal, June 1974


FTICR/MS studies of gas-phase actinide ion reactions: fundamental chemical and physical properties of atomic and molecular actinide ions and neutrals
journal, May 2007


Actinide sulfides in the gas phase: experimental and theoretical studies of the thermochemistry of AnS (An = Ac, Th, Pa, U, Np, Pu, Am and Cm)
journal, January 2011

  • Pereira, Cláudia C. L.; Marsden, Colin J.; Marçalo, Joaquim
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 28
  • DOI: 10.1039/c1cp20996e

Bonding in Cationic MCH 2 + (M=K-La, Hf-Rn): A Theoretical Study on Periodic Trends
journal, April 2010

  • Zhang, Xinhao; Schwarz, Helmut
  • Chemistry - A European Journal, Vol. 16, Issue 20
  • DOI: 10.1002/chem.201000567

Multireference coupled‐cluster method using a single‐reference formalism
journal, January 1991

  • Oliphant, Nevin; Adamowicz, Ludwik
  • The Journal of Chemical Physics, Vol. 94, Issue 2
  • DOI: 10.1063/1.460031

Gas-Phase Oxidation Reactions of Neptunium and Plutonium Ions Investigated via Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
journal, August 2002

  • Santos, Marta; Marçalo, Joaquim; Pires de Matos, António
  • The Journal of Physical Chemistry A, Vol. 106, Issue 31
  • DOI: 10.1021/jp025733f

Thermochemical Data for Gaseous Monoxides
journal, October 1983

  • Pedley, J. B.; Marshall, E. M.
  • Journal of Physical and Chemical Reference Data, Vol. 12, Issue 4
  • DOI: 10.1063/1.555698

Methane C−H Bond Activation by Gas-Phase Th + and U + : Reaction Mechanisms and Bonding Analysis
journal, July 2009

  • Di Santo, Emanuela; Michelini, Maria del Carmen; Russo, Nino
  • Organometallics, Vol. 28, Issue 13
  • DOI: 10.1021/om900156f

Thermochemistry of the activation of N2 on iron cluster cations: Guided ion beam studies of the reactions of Fen+ (n=1–19) with N2
journal, February 2006

  • Tan, Lin; Liu, Fuyi; Armentrout, P. B.
  • The Journal of Chemical Physics, Vol. 124, Issue 8
  • DOI: 10.1063/1.2172240

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Correlation consistent basis sets for actinides. I. The Th and U atoms
journal, February 2015

  • Peterson, Kirk A.
  • The Journal of Chemical Physics, Vol. 142, Issue 7
  • DOI: 10.1063/1.4907596

Ab Initio Molecular Dynamics Study of the Reaction between Th + and H 2 O
journal, August 2010

  • Zhou, Jia; Schlegel, H. Bernhard
  • The Journal of Physical Chemistry A, Vol. 114, Issue 33
  • DOI: 10.1021/jp912098w

Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
journal, December 2002

  • Peterson, Kirk A.; Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 117, Issue 23
  • DOI: 10.1063/1.1520138

Matrix Infrared Spectra and Theoretical Studies of Thorium Oxide Species: ThO x and Th 2 O y
journal, December 2011

  • Andrews, Lester; Gong, Yu; Liang, Binyong
  • The Journal of Physical Chemistry A, Vol. 115, Issue 50
  • DOI: 10.1021/jp208926m

Reaction of Sc + , Ti + , and V + with CO. MC + and MO + bond energies
journal, September 1991

  • Clemmer, D. E.; Elkind, J. L.; Aristov, N.
  • The Journal of Chemical Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.460844

Oxidation Reactions of Lanthanide Cations with N 2 O and O 2 :  Periodicities in Reactivity
journal, October 2001

  • Koyanagi, Gregory K.; Bohme, Diethard K.
  • The Journal of Physical Chemistry A, Vol. 105, Issue 39
  • DOI: 10.1021/jp011627m

Computed Vibrational Frequencies of Actinide Oxides AnO 0/+/2+ and AnO 2 0/+/2+ (An = Th, Pa, U, Np, Pu, Am, Cm)
journal, June 2011

  • Kovács, Attila; Konings, Rudy J. M.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 24
  • DOI: 10.1021/jp202538k

Rate coefficients for oxidation of Ti + and Th + by O 2 and NO at low energies
journal, December 1974

  • Johnsen, Rainer; Castell, F. R.; Biondi, Manfred A.
  • The Journal of Chemical Physics, Vol. 61, Issue 12
  • DOI: 10.1063/1.1681894

Guided ion beam studies of the reactions of Con+ (n=1–18) with N2: Cobalt cluster mononitride and dinitride bond energies
journal, May 2008

  • Liu, Fuyi; Li, Ming; Tan, Lin
  • The Journal of Chemical Physics, Vol. 128, Issue 19
  • DOI: 10.1063/1.2909978

Reliable Potential Energy Surfaces for the Reactions of H 2 O with ThO 2 , PaO 2 + , UO 2 2+ , and UO 2 +
journal, November 2015

  • Vasiliu, Monica; Peterson, Kirk A.; Gibson, John K.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 46
  • DOI: 10.1021/acs.jpca.5b08618

Why is hafnium so unreactive?
journal, August 2006

  • Parke, Laura G.; Hinton, Christopher S.; Armentrout, P. B.
  • International Journal of Mass Spectrometry, Vol. 254, Issue 3
  • DOI: 10.1016/j.ijms.2006.05.025

Reactions of Fe+, Co+, and Ni+ with Silane. Electronic State Effects, Comparison to Reactions with Methane, and M+-SiHx (x = 0-3) Bond Energies
journal, January 1995

  • Kickel, Bernice L.; Armentrout, P. B.
  • Journal of the American Chemical Society, Vol. 117, Issue 2
  • DOI: 10.1021/ja00107a020

Parametrization of kinetic energy dependences of ion–polar molecule collision rate constants by trajectory calculations
journal, March 1994

  • Su, Timothy
  • The Journal of Chemical Physics, Vol. 100, Issue 6
  • DOI: 10.1063/1.466255

Formulation and implementation of a relativistic unrestricted coupled‐cluster method including noniterative connected triples
journal, November 1996

  • Visscher, Lucas; Lee, Timothy J.; Dyall, Kenneth G.
  • The Journal of Chemical Physics, Vol. 105, Issue 19
  • DOI: 10.1063/1.472655

A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures
journal, November 2008

  • Feller, David; Peterson, Kirk A.; Dixon, David A.
  • The Journal of Chemical Physics, Vol. 129, Issue 20
  • DOI: 10.1063/1.3008061

Nitric Oxide as an Electron Donor, an Atom Donor, an Atom Acceptor, and a Ligand in Reactions with Atomic Transition-Metal and Main-Group Cations in the Gas Phase
journal, December 2005

  • Blagojevic, Voislav; Flaim, Eric; Jarvis, Michael J. Y.
  • The Journal of Physical Chemistry A, Vol. 109, Issue 49
  • DOI: 10.1021/jp0553939

Probing Actinide Electronic Structure Using Fluorescence and Multi-photon Ionization Spectroscopy
journal, December 2006


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
text, January 1988

  • Robert, Parr,; Chengteh, Lee,; Weitao, Yang,
  • The University of North Carolina at Chapel Hill University Libraries
  • DOI: 10.17615/zrp0-ry04

The Spectrum of Thorium from 250 nm to 5500 nm: Ritz Wavelengths and Optimized Energy Levels
text, January 2013