skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on April 22, 2020

Title: Violating Bell’s inequality with remotely connected superconducting qubits

Abstract

Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, as entanglement is required to achieve and verify secure communications. Remote entanglement has been realized using a number of different probabilistic schemes, but deterministic remote entanglement has only been demonstrated recently, using a variety of superconducting circuit approaches. However, the deterministic violation of a Bell inequality, a strong measure of quantum correlation, has not been demonstrated so far in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. We present a simple and robust architecture for achieving this benchmark result in a superconducting system.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [3]; ORCiD logo [1];  [1];  [4];  [1];  [5]; ORCiD logo [3];  [6]; ORCiD logo [4]
  1. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering
  2. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering; Univ. of California, Santa Barbara, CA (United States). Dept. of Physics; Google Inc., Santa Barbara, CA (United States)
  3. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering, and Dept. of Physics
  4. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering; Argonne National Lab. (ANL), Argonne, IL (United States). Inst. for Molecular Engineering, and Materials Science Division
  5. Univ. of Chicago, IL (United States). Inst. for Molecular Engineering; Univ. of California, Santa Barbara, CA (United States). Dept. of Physics
  6. Univ. of Chicago, IL (United States). Dept. of Physics
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
Army Research Office (ARO); National Science Foundation (NSF); Univ. of Chicago, IL (United States). Materials Research Science & Engineering Center (MRSEC); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1557614
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 15; Journal Issue: 8; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; entanglement; qubit; superconducting

Citation Formats

Zhong, Y. P., Chang, H. -S., Satzinger, K. J., Chou, M. H., Bienfait, A., Conner, C. R., Dumur, É., Grebel, J., Peairs, G. A., Povey, R. G., Schuster, D. I., and Cleland, A. N. Violating Bell’s inequality with remotely connected superconducting qubits. United States: N. p., 2019. Web. doi:10.1038/s41567-019-0507-7.
Zhong, Y. P., Chang, H. -S., Satzinger, K. J., Chou, M. H., Bienfait, A., Conner, C. R., Dumur, É., Grebel, J., Peairs, G. A., Povey, R. G., Schuster, D. I., & Cleland, A. N. Violating Bell’s inequality with remotely connected superconducting qubits. United States. doi:10.1038/s41567-019-0507-7.
Zhong, Y. P., Chang, H. -S., Satzinger, K. J., Chou, M. H., Bienfait, A., Conner, C. R., Dumur, É., Grebel, J., Peairs, G. A., Povey, R. G., Schuster, D. I., and Cleland, A. N. Mon . "Violating Bell’s inequality with remotely connected superconducting qubits". United States. doi:10.1038/s41567-019-0507-7.
@article{osti_1557614,
title = {Violating Bell’s inequality with remotely connected superconducting qubits},
author = {Zhong, Y. P. and Chang, H. -S. and Satzinger, K. J. and Chou, M. H. and Bienfait, A. and Conner, C. R. and Dumur, É. and Grebel, J. and Peairs, G. A. and Povey, R. G. and Schuster, D. I. and Cleland, A. N.},
abstractNote = {Quantum communication relies on the efficient generation of entanglement between remote quantum nodes, as entanglement is required to achieve and verify secure communications. Remote entanglement has been realized using a number of different probabilistic schemes, but deterministic remote entanglement has only been demonstrated recently, using a variety of superconducting circuit approaches. However, the deterministic violation of a Bell inequality, a strong measure of quantum correlation, has not been demonstrated so far in a superconducting quantum communication architecture, in part because achieving sufficiently strong correlation requires fast and accurate control of the emission and capture of the entangling photons. We present a simple and robust architecture for achieving this benchmark result in a superconducting system.},
doi = {10.1038/s41567-019-0507-7},
journal = {Nature Physics},
number = 8,
volume = 15,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on April 22, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?
journal, March 1985


Coherent Josephson Qubit Suitable for Scalable Quantum Integrated Circuits
journal, August 2013


Detector inefficiencies in the Einstein-Podolsky-Rosen experiment
journal, June 1987


Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures
journal, May 2017


Qubit Architecture with High Coherence and Fast Tunable Coupling
journal, November 2014


Robust quantum state transfer using tunable couplers
journal, April 2015


Violation of Bell's inequality in Josephson phase qubits
journal, September 2009

  • Ansmann, Markus; Wang, H.; Bialczak, Radoslaw C.
  • Nature, Vol. 461, Issue 7263
  • DOI: 10.1038/nature08363

Chip-to-chip entanglement of transmon qubits using engineered measurement fields
journal, February 2018


State Tomography of Capacitively Shunted Phase Qubits with High Fidelity
journal, August 2006


Synthesizing arbitrary quantum states in a superconducting resonator
journal, May 2009


Coherent quantum state storage and transfer between two phase qubits via a resonant cavity
journal, September 2007

  • Sillanpää, Mika A.; Park, Jae I.; Simmonds, Raymond W.
  • Nature, Vol. 449, Issue 7161
  • DOI: 10.1038/nature06124

On the Einstein Podolsky Rosen paradox
journal, November 1964


Deterministically Encoding Quantum Information Using 100-Photon Schrodinger Cat States
journal, September 2013


Deterministic quantum state transfer and remote entanglement using microwave photons
journal, June 2018


Quantum ground state and single-phonon control of a mechanical resonator
journal, March 2010

  • O’Connell, A. D.; Hofheinz, M.; Ansmann, M.
  • Nature, Vol. 464, Issue 7289
  • DOI: 10.1038/nature08967

Surface Code Quantum Communication
journal, May 2010


Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network
journal, April 1997


Flying microwave qubits with nearly perfect transfer efficiency
journal, July 2011


Offset masks for lift‐off photoprocessing
journal, September 1977

  • Dolan, G. J.
  • Applied Physics Letters, Vol. 31, Issue 5, p. 337-339
  • DOI: 10.1063/1.89690

Characterization and reduction of capacitive loss induced by sub-micron Josephson junction fabrication in superconducting qubits
journal, July 2017

  • Dunsworth, A.; Megrant, A.; Quintana, C.
  • Applied Physics Letters, Vol. 111, Issue 2
  • DOI: 10.1063/1.4993577

On-demand quantum state transfer and entanglement between remote microwave cavity memories
journal, April 2018


Charge-insensitive qubit design derived from the Cooper pair box
journal, October 2007


Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state
journal, April 2008

  • Neeley, Matthew; Ansmann, M.; Bialczak, Radoslaw C.
  • Nature Physics, Vol. 4, Issue 7
  • DOI: 10.1038/nphys972

Deterministic Remote Entanglement of Superconducting Circuits through Microwave Two-Photon Transitions
journal, May 2018


Deterministic bidirectional communication and remote entanglement generation between superconducting qubits
journal, February 2019


Superconducting Circuits for Quantum Information: An Outlook
journal, March 2013


Experimental violation of a Bell’s inequality in time with weak measurement
journal, April 2010

  • Palacios-Laloy, Agustin; Mallet, François; Nguyen, François
  • Nature Physics, Vol. 6, Issue 6
  • DOI: 10.1038/nphys1641

State preservation by repetitive error detection in a superconducting quantum circuit
journal, March 2015


A method for building low loss multi-layer wiring for superconducting microwave devices
journal, February 2018

  • Dunsworth, A.; Barends, R.; Chen, Yu
  • Applied Physics Letters, Vol. 112, Issue 6
  • DOI: 10.1063/1.5014033

Quantum acoustics with superconducting qubits
journal, September 2017