DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte

Abstract

The ability to synthesize value-added chemicals directly from CO2 will be an important technological advancement for future generations. Using solar energy to drive thermodynamically uphill electrochemical reactions allows for near carbon-neutral processes that can convert CO2 into energy-rich carbon-based fuels. Here, we report on the use of inexpensive CuSn alloys to convert CO2 into CO in an acetonitrile/imidazolium-based electrolyte. Synergistic interactions between the CuSn catalyst and the imidazolium cation enables the electrocatalytic conversion of CO2 into CO at –1.65 V versus the standard calomel electrode (SCE). This catalyst system is characterized by overpotentials for CO2 reduction that are similar to more expensive Au- and Ag-based catalysts, and also shows that the efficacy of the CO2 reduction reaction can be tuned by varying the CuSn ratio.

Authors:
; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Fluid Interface Reactions, Structures and Transport Center (FIRST); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1557381
Alternate Identifier(s):
OSTI ID: 1557541
Grant/Contract Number:  
Fluid Interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Energies (Basel)
Additional Journal Information:
Journal Name: Energies (Basel) Journal Volume: 12 Journal Issue: 16; Journal ID: ISSN 1996-1073
Publisher:
MDPI AG
Country of Publication:
Switzerland
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; electrocatalysis; electrodeposition; CO2 electroreduction; non-aqueous electrolytes

Citation Formats

Sacci, Robert, Velardo, Stephanie, Xiong, Lu, Lutterman, Daniel, and Rosenthal, Joel. Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte. Switzerland: N. p., 2019. Web. doi:10.3390/en12163132.
Sacci, Robert, Velardo, Stephanie, Xiong, Lu, Lutterman, Daniel, & Rosenthal, Joel. Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte. Switzerland. https://doi.org/10.3390/en12163132
Sacci, Robert, Velardo, Stephanie, Xiong, Lu, Lutterman, Daniel, and Rosenthal, Joel. Thu . "Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte". Switzerland. https://doi.org/10.3390/en12163132.
@article{osti_1557381,
title = {Copper-Tin Alloys for the Electrocatalytic Reduction of CO2 in an Imidazolium-Based Non-Aqueous Electrolyte},
author = {Sacci, Robert and Velardo, Stephanie and Xiong, Lu and Lutterman, Daniel and Rosenthal, Joel},
abstractNote = {The ability to synthesize value-added chemicals directly from CO2 will be an important technological advancement for future generations. Using solar energy to drive thermodynamically uphill electrochemical reactions allows for near carbon-neutral processes that can convert CO2 into energy-rich carbon-based fuels. Here, we report on the use of inexpensive CuSn alloys to convert CO2 into CO in an acetonitrile/imidazolium-based electrolyte. Synergistic interactions between the CuSn catalyst and the imidazolium cation enables the electrocatalytic conversion of CO2 into CO at –1.65 V versus the standard calomel electrode (SCE). This catalyst system is characterized by overpotentials for CO2 reduction that are similar to more expensive Au- and Ag-based catalysts, and also shows that the efficacy of the CO2 reduction reaction can be tuned by varying the CuSn ratio.},
doi = {10.3390/en12163132},
journal = {Energies (Basel)},
number = 16,
volume = 12,
place = {Switzerland},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3390/en12163132

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis
journal, March 2016


Electrochemical windows and impedance characteristics of [Bmim+][<mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>BF</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math>] and [Bdmim+][<mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>BF</mml:mtext></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow><mml:mrow><mml:mo>-</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math>] ionic liquids at the surfaces of Au, Pt, Ta and glassy carbon electrodes
journal, November 2009


Carbon Dioxide Reduction in Room-Temperature Ionic Liquids: The Effect of the Choice of Electrode Material, Cation, and Anion
journal, November 2016

  • Tanner, Eden E. L.; Batchelor-McAuley, Christopher; Compton, Richard G.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 46
  • DOI: 10.1021/acs.jpcc.6b10564

Switching the Reaction Course of Electrochemical CO 2 Reduction with Ionic Liquids
journal, May 2014

  • Sun, Liyuan; Ramesha, Ganganahalli K.; Kamat, Prashant V.
  • Langmuir, Vol. 30, Issue 21
  • DOI: 10.1021/la5009076

Selective Conversion of CO 2 to CO with High Efficiency Using an Inexpensive Bismuth-Based Electrocatalyst
journal, June 2013

  • DiMeglio, John L.; Rosenthal, Joel
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja4033549

Thermodynamic Aspects of Electrocatalytic CO 2 Reduction in Acetonitrile and with an Ionic Liquid as Solvent or Electrolyte
journal, October 2015


Efficient Conversion of CO 2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts
journal, April 2015

  • Medina-Ramos, Jonnathan; Pupillo, Rachel C.; Keane, Thomas P.
  • Journal of the American Chemical Society, Vol. 137, Issue 15
  • DOI: 10.1021/ja5121088

Powering the planet: Chemical challenges in solar energy utilization
journal, October 2006

  • Lewis, N. S.; Nocera, D. G.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 43, p. 15729-15735
  • DOI: 10.1073/pnas.0603395103

Directing the Outcome of CO 2 Reduction at Bismuth Cathodes Using Varied Ionic Liquid Promoters
journal, March 2018


Solar-powered synthesis of hydrocarbons from carbon dioxide and water
journal, May 2019

  • Kunene, Thabiso; Xiong, Lu; Rosenthal, Joel
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1904856116

Ionic Liquid-Mediated Selective Conversion of CO2 to CO at Low Overpotentials
journal, September 2011

  • Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.
  • Science, Vol. 334, Issue 6056, p. 643-644
  • DOI: 10.1126/science.1209786

Cathodic Corrosion: A Quick, Clean, and Versatile Method for the Synthesis of Metallic Nanoparticles
journal, May 2011

  • Yanson, Alexei I.; Rodriguez, Paramaconi; Garcia-Araez, Nuria
  • Angewandte Chemie International Edition, Vol. 50, Issue 28, p. 6346-6350
  • DOI: 10.1002/anie.201100471

Modern Global Climate Change
journal, December 2003


Structural Transition in an Ionic Liquid Controls CO 2 Electrochemical Reduction
journal, July 2015

  • García Rey, Natalia; Dlott, Dana D.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 36
  • DOI: 10.1021/acs.jpcc.5b03397

The electrochemical behavior of ad-atoms and their effect on hydrogen evolution
journal, April 1979

  • Furuya, Nagakazu; Motoo, Satoshi
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 98, Issue 2
  • DOI: 10.1016/S0022-0728(79)80259-4

The electrochemical behavior of ad-atoms and their effect on hydrogen evolution
journal, September 1976

  • Furuya, N.; Motoo, S.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 72, Issue 2
  • DOI: 10.1016/S0022-0728(76)80165-9

Anisotropic etching of platinum electrodes at the onset of cathodic corrosion
journal, August 2016

  • Hersbach, Thomas J. P.; Yanson, Alexei I.; Koper, Marc T. M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12653

Catalysis for the Valorization of Exhaust Carbon: from CO 2 to Chemicals, Materials, and Fuels. Technological Use of CO 2
journal, November 2013

  • Aresta, Michele; Dibenedetto, Angela; Angelini, Antonella
  • Chemical Reviews, Vol. 114, Issue 3
  • DOI: 10.1021/cr4002758

Ionic Liquids at Electrified Interfaces
journal, March 2014

  • Fedorov, Maxim V.; Kornyshev, Alexei A.
  • Chemical Reviews, Vol. 114, Issue 5
  • DOI: 10.1021/cr400374x

Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide
journal, March 2018


Influence of cation chemical composition and structure on the double layer capacitance for Bi(111)|room temperature ionic liquid interface
journal, March 2012


Interfacial ionic ‘liquids’: connecting static and dynamic structures
journal, December 2014


Structure of [C 4 mpyr][NTf 2 ] Room-Temperature Ionic Liquid at Charged Gold Interfaces
journal, May 2012

  • Lauw, Yansen; Horne, Michael D.; Rodopoulos, Theo
  • Langmuir, Vol. 28, Issue 19
  • DOI: 10.1021/la3005757

Electrical double layer in ionic liquids: Structural transitions from multilayer to monolayer structure at the interface
journal, November 2013


Anthropogenic Chemical Carbon Cycle for a Sustainable Future
journal, August 2011

  • Olah, George A.; Prakash, G. K. Surya; Goeppert, Alain
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja202642y

Comparing the differential capacitance of two ionic liquid electrolytes: Effects of specific adsorption
journal, January 2014


Hysteresis in the measurement of double-layer capacitance at the gold–ionic liquid interface
journal, October 2010


Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries
journal, December 2007


Recent Progress in the Theoretical Investigation of Electrocatalytic Reduction of CO 2
journal, April 2018

  • Tian, Ziqi; Priest, Chad; Chen, Liang
  • Advanced Theory and Simulations, Vol. 1, Issue 5
  • DOI: 10.1002/adts.201800004

Efficient Reduction of CO 2 to CO with High Current Density Using in Situ or ex Situ Prepared Bi-Based Materials
journal, May 2014

  • Medina-Ramos, Jonnathan; DiMeglio, John L.; Rosenthal, Joel
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja501923g

Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids
journal, January 2015

  • Hanc-Scherer, Florin A.; Montiel, Miguel A.; Montiel, Vicente
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 37
  • DOI: 10.1039/C5CP02361K

Rational Design of Bi Nanoparticles for Efficient Electrochemical CO 2 Reduction: The Elucidation of Size and Surface Condition Effects
journal, August 2016


Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using η-Cu6Sn5 thin films as a model system
journal, January 2013

  • Baggetto, Loïc; Jumas, Jean-Claude; Górka, Joanna
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 26
  • DOI: 10.1039/c3cp51657a

A “by-productless” cellulose foaming agent for use in imidazolium ionic liquids
journal, January 2011

  • Scott, Janet L.; Unali, Gianfranco; Perosa, Alvise
  • Chemical Communications, Vol. 47, Issue 10
  • DOI: 10.1039/c0cc05057a

Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite
journal, November 2013

  • Black, Jennifer M.; Walters, Deron; Labuda, Aleksander
  • Nano Letters, Vol. 13, Issue 12, p. 5954-5960
  • DOI: 10.1021/nl4031083

Electrodeposited Cu-Sn Alloy for Electrochemical CO2 Reduction to CO/HCOO−
journal, November 2017