skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A computational study of symmetry and well-posedness of structural topology optimization

Abstract

We report on computational topological optimization of elastic structures, in particular minimization of compliance subject to a constraint on the mass. Through computational experiments, it is discovered that even very simple optimization problems can exhibit complex behavior such as critical points and bifurcation. In the vicinity of significant points, structural topology optimization problems are not well-posed since infinitesimally small perturbations lead to distinct topologies.

Authors:
ORCiD logo [1];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1557061
Report Number(s):
LLNL-JRNL-761457
Journal ID: ISSN 1615-147X; 949598
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Structural and Multidisciplinary Optimization
Additional Journal Information:
Journal Volume: 59; Journal Issue: 3; Journal ID: ISSN 1615-147X
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 97 MATHEMATICS AND COMPUTING; Structures; Topology; Optimization; Bifurcation; Well-posed

Citation Formats

White, Daniel A., and Voronin, Alexey. A computational study of symmetry and well-posedness of structural topology optimization. United States: N. p., 2018. Web. doi:10.1007/s00158-018-2098-9.
White, Daniel A., & Voronin, Alexey. A computational study of symmetry and well-posedness of structural topology optimization. United States. doi:10.1007/s00158-018-2098-9.
White, Daniel A., and Voronin, Alexey. Thu . "A computational study of symmetry and well-posedness of structural topology optimization". United States. doi:10.1007/s00158-018-2098-9. https://www.osti.gov/servlets/purl/1557061.
@article{osti_1557061,
title = {A computational study of symmetry and well-posedness of structural topology optimization},
author = {White, Daniel A. and Voronin, Alexey},
abstractNote = {We report on computational topological optimization of elastic structures, in particular minimization of compliance subject to a constraint on the mass. Through computational experiments, it is discovered that even very simple optimization problems can exhibit complex behavior such as critical points and bifurcation. In the vicinity of significant points, structural topology optimization problems are not well-posed since infinitesimally small perturbations lead to distinct topologies.},
doi = {10.1007/s00158-018-2098-9},
journal = {Structural and Multidisciplinary Optimization},
number = 3,
volume = 59,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share: