skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant

Abstract

Inertial confinement fusion requires the inertia of the imploding mass to provide the necessary confinement such that the core reaches adequate high density, temperature, and pressure. Studies utilize low-Z capsules filled with hydrogenic fuel, which are subject to multiple instabilities at the interfaces during the implosion. To improve the stability of the fuel:capsule interface and narrow the imploding shell profile, capsules are doped with a small atomic percentage of a high-Z material. A series of recent indirect-drive experiments executed at the National Ignition Facility with tungsten-doped high density carbon capsules has demonstrated that the presence of this dopant serves to increase the in-flight aspect ratio of the shell and increase the compression and neutron yield performance of both gas-filled and deuterium-tritium cryogenically layered targets. These experiments definitively show that benefits accrued by the introduction of a high-Z dopant into the capsule can outweigh the detrimentally reduced stability of the ablation front, avoiding shell breakup or significant radiative cooling of the hot spot. Future experiments will utilize these types of capsules to additionally increase nuclear performance.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [2]; ORCiD logo [1];  [1];  [2];  [1];  [3];  [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
  3. Diamond Materials GmbH, Freiburg (Germany)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1557044
Alternate Identifier(s):
OSTI ID: 1466869
Report Number(s):
[LLNL-JRNL-740802]
[Journal ID: ISSN 1070-664X; 894254]
Grant/Contract Number:  
[AC52-07NA27344; NA0001808]
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
[ Journal Volume: 25; Journal Issue: 8]; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Berzak Hopkins, L., Divol, L., Weber, C., Le Pape, S., Meezan, N. B., Ross, J. S., Tommasini, R., Khan, S., Ho, D. D., Biener, J., Dewald, E., Goyon, C., Kong, C., Nikroo, A., Pak, A., Rice, N., Stadermann, M., Wild, C., Callahan, D., and Hurricane, O. Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant. United States: N. p., 2018. Web. doi:10.1063/1.5033459.
Berzak Hopkins, L., Divol, L., Weber, C., Le Pape, S., Meezan, N. B., Ross, J. S., Tommasini, R., Khan, S., Ho, D. D., Biener, J., Dewald, E., Goyon, C., Kong, C., Nikroo, A., Pak, A., Rice, N., Stadermann, M., Wild, C., Callahan, D., & Hurricane, O. Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant. United States. doi:10.1063/1.5033459.
Berzak Hopkins, L., Divol, L., Weber, C., Le Pape, S., Meezan, N. B., Ross, J. S., Tommasini, R., Khan, S., Ho, D. D., Biener, J., Dewald, E., Goyon, C., Kong, C., Nikroo, A., Pak, A., Rice, N., Stadermann, M., Wild, C., Callahan, D., and Hurricane, O. Mon . "Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant". United States. doi:10.1063/1.5033459. https://www.osti.gov/servlets/purl/1557044.
@article{osti_1557044,
title = {Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant},
author = {Berzak Hopkins, L. and Divol, L. and Weber, C. and Le Pape, S. and Meezan, N. B. and Ross, J. S. and Tommasini, R. and Khan, S. and Ho, D. D. and Biener, J. and Dewald, E. and Goyon, C. and Kong, C. and Nikroo, A. and Pak, A. and Rice, N. and Stadermann, M. and Wild, C. and Callahan, D. and Hurricane, O.},
abstractNote = {Inertial confinement fusion requires the inertia of the imploding mass to provide the necessary confinement such that the core reaches adequate high density, temperature, and pressure. Studies utilize low-Z capsules filled with hydrogenic fuel, which are subject to multiple instabilities at the interfaces during the implosion. To improve the stability of the fuel:capsule interface and narrow the imploding shell profile, capsules are doped with a small atomic percentage of a high-Z material. A series of recent indirect-drive experiments executed at the National Ignition Facility with tungsten-doped high density carbon capsules has demonstrated that the presence of this dopant serves to increase the in-flight aspect ratio of the shell and increase the compression and neutron yield performance of both gas-filled and deuterium-tritium cryogenically layered targets. These experiments definitively show that benefits accrued by the introduction of a high-Z dopant into the capsule can outweigh the detrimentally reduced stability of the ablation front, avoiding shell breakup or significant radiative cooling of the hot spot. Future experiments will utilize these types of capsules to additionally increase nuclear performance.},
doi = {10.1063/1.5033459},
journal = {Physics of Plasmas},
number = [8],
volume = [25],
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Comparison between simulated density (solid) and temperature (dashed) profiles at peak velocity for an undoped capsule (red) and a capsule which includes a doped layer (blue).

Save / Share:

Works referenced in this record:

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, August 2016


Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets
journal, June 2012

  • Fiksel, G.; Hu, S. X.; Goncharov, V. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729732

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Preheat Effects on Shock Propagation in Indirect-Drive Inertial Confinement Fusion Ablator Materials
journal, December 2003


Progress in hohlraum physics for the National Ignition Facility
journal, May 2014

  • Moody, J. D.; Callahan, D. A.; Hinkel, D. E.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876966

Zinc Oxide–Coated Poly(HIPE) Annular Liners to Advance Laser Indirect Drive Inertial Confinement Fusion
journal, November 2017


Effects of variable x‐ray preheat shielding in indirectly driven implosions
journal, May 1996

  • Landen, O. L.; Keane, C. J.; Hammel, B. A.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872007

Increasing robustness of indirect drive capsule designs against short wavelength hydrodynamic instabilities
journal, May 2005

  • Haan, S. W.; Herrmann, M. C.; Dittrich, T. R.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1885003

High-mode Rayleigh-Taylor growth in NIF ignition capsules
journal, June 2010


Erratum: “Review of the National Ignition Campaign 2009-2012” [Phys. Plasmas 21, 020501 (2014)]
journal, December 2014

  • Lindl, J. D.; Landen, O. L.; Edwards, J.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4903459

Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


The National Ignition Facility: enabling fusion ignition for the 21st century
journal, November 2004


Diamond spheres for inertial confinement fusion
journal, September 2009


Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
journal, May 2016


Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)
journal, May 2015

  • Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921151

The near vacuum hohlraum campaign at the NIF: A new approach
journal, May 2016

  • Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4950843

First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Design and modeling of ignition targets for the National Ignition Facility
journal, June 1995

  • Haan, Steven W.; Pollaine, Stephen M.; Lindl, John D.
  • Physics of Plasmas, Vol. 2, Issue 6
  • DOI: 10.1063/1.871209

Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- Z Dopants
journal, May 2012


Controlled incorporation of mid-to-high Z transition metals in CVD diamond
journal, May 2010


Symmetry tuning for ignition capsules via the symcap technique
journal, May 2011

  • Kyrala, G. A.; Kline, J. L.; Dixit, S.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3574504

Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited)
journal, October 2012

  • Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728095

X-ray shadow imprint of hydrodynamic instabilities on the surface of inertial confinement fusion capsules by the fuel fill tube
journal, March 2017


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.