skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on September 5, 2020

Title: H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723

Abstract

Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H 0 of a few percent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI 2033-4723 ($$z_{\rm src} =\,$$1.662, $$z_{\rm lens}=\,$$0.6575), one of the core targets of the H0LiCOW project for which we present cosmological inferences in a companion paper. We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens ($$\sigma _{\rm {los}}= 250^{+15}_{-21}$$ km s -1) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to i < 23 mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalogue, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify two galaxy groups and three galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [4];  [5];  [6];  [7];  [8];  [9];  [10];  [7];  [10];  [11]; ORCiD logo [12];  [11];  [13];  [14];  [11];  [15];  [11] more »;  [10];  [16]; ORCiD logo [17];  [18];  [19];  [16];  [20]; ORCiD logo [21];  [22];  [23];  [24];  [25];  [26];  [27];  [19]; ORCiD logo [28];  [29];  [30];  [17];  [28];  [31];  [22];  [25];  [32];  [29];  [33];  [34];  [35];  [36];  [37];  [16];  [38];  [39];  [25];  [40]; ORCiD logo [39];  [22];  [41]; ORCiD logo [39];  [26];  [24];  [26];  [42]; ORCiD logo [43];  [44]; ORCiD logo [45];  [46];  [28] « less
  1. STAR Inst., Liège (Belgium)
  2. National Astronomical Observatory of Japan, Hilo, HI (United States). Subaru Telescope; Univ. of California, Davis, CA (United States)
  3. Univ. of California, Davis, CA (United States)
  4. Univ. of Tokyo, Kashiwa, Chiba (Japan); Leiden Univ., Leiden (Netherlands). Leiden Observatory
  5. CRAL, Observatoire de Lyon, Saint-Genis-Laval (France)
  6. Univ. of Cambridge (United Kingdom). Inst. of Astronomy
  7. European Southern Observatory, Garching (Germany)
  8. Univ. of Tokyo, Kashiwa, Chiba (Japan); National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo (Japan)
  9. Max Planck Inst. for Astrophysics, Garching (Germany); Academia Sinica, Taipei (Taiwan). Inst. of Astronomy and Astrophysics; Technical Univ. of Munich, Munich (Germany) Physics Dept.
  10. Univ. of California, Los Angeles, CA (United States)
  11. Ecole Polytechnique Federale Lausanne (Switzlerland). Lab. d’Astrophysique
  12. Univ. of Portsmouth (United Kingdom). Inst. of Cosmology and Gravitation
  13. Exzellenzcluster Univ., Garching (Germany)
  14. Univ. of Groningen, Groningen (Netherlands)
  15. Stanford Univ., Stanford, CA (United States). Kavli Inst. for Particle Astrophysics & Cosmology
  16. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  17. Univ. Autonoma de Madrid, Madrid (Spain). Inst. de Fisica TeoricaUAM/CSIC
  18. Centre National de la Recherche Scientifique (CNRS), Paris (France). Inst. d’Astrophysique de Paris; Sorbonne Univ., Paris (France). Inst. d’Astrophysique de Paris
  19. Univ. College London, London (United Kingdom)
  20. Stanford Univ., Stanford, CA (United States). Kavli Inst. for Particle Astrophysics & Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States)
  21. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Lab. Interinstitucional de e-Astronomia – LIneA, Rio de Janeiro (Brazil)
  22. Univ. of Illinois at Urbana-Champaign, IL (United States); National Center for Supercomputing Applications, Urbana, IL (United States)
  23. The Barcelona Inst. of Science and Technology, Barcelona (Spain). Inst. de Fisica d’Altes Energies (IFAE)
  24. Inst. d’Estudis Espacials de Catalunya (IEEC), Barcelona (Spain); Inst. of Space Sciences (ICE, CSIC), Barcelona (Spain)
  25. Lab. Interinstitucional de e-Astronomia – LIneA, Rio de Janeiro (Brazil); Observatorio Nacional, Rio de Janeiro, (Brazil)
  26. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)
  27. Indian Inst. of Technology (IIT) Hyderabad, Kandi, Telangana (India)
  28. Univ. of Michigan, Ann Arbor, MI (United States)
  29. Santa Cruz Inst. for Particle Physics, Santa Cruz, CA (United States)
  30. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Univ. of Chicago, Chicago, IL (United States). Kavli Inst. for Cosmological Physics
  31. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  32. Univ. College London, London (United Kingdom); Federal Inst. of Technology, Zurich (Switzerland)
  33. The Ohio State Univ., Columbus, OH (United States). Center for Cosmology and Astro-Particle Physics
  34. Harvard & Smithsonian, Cambridge, MA (United States). Center for Astrophysics
  35. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  36. Univ. of Arizona, Tucson, AZ (United States)
  37. Macquarie Univ., NSW (Australia). Australian Astronomical Optics
  38. Univ. de Sao Paulo, Sao Paulo (Brazil); Texas A & M Univ., College Station, TX (United States). George P. and Cynthia Woods Mitchell Inst. for Fundamental Physics and Astronomy
  39. Princeton Univ., NJ (United States)
  40. Texas A & M Univ., College Station, TX (United States). George P. and Cynthia Woods Mitchell Inst. for Fundamental Physics and Astronomy
  41. Inst. Catalana de Recerca i Estudis Avancats, Barcelona (Spain)
  42. Univ. of Southampton (United Kingdom)
  43. Brandeis Univ., Waltham, MA (United States)
  44. Lab. Interinstitucional de e-Astronomia – LIneA, Rio de Janeiro (Brazil); Univ. Estadual de Campinas, Campinas, SP (Brazil)
  45. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division
  46. National Center for Supercomputing Applications, Urbana, IL (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1556959
Report Number(s):
arXiv:1905.08800; FERMILAB-PUB-19-168-AE; DES-2019-0432
Journal ID: ISSN 0035-8711; oai:inspirehep.net:1765878
Grant/Contract Number:  
AC02-07CH11359; AST-1450141; AST-1312329; HSTGO-15320; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 490; Journal Issue: 1; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: strong; galaxies: groups: general; quasars: individual: WFI 2033−4723

Citation Formats

Sluse, D., Rusu, C. E., Fassnacht, C. D., Sonnenfeld, A., Richard, J., Auger, M. W., Coccato, L., Wong, K. C., Suyu, S. H., Treu, T., Agnello, A., Birrer, S., Bonvin, V., Collett, T., Courbin, F., Hilbert, S., Koopmans, L. V. E., Tihhanova, O., Marshall, P. J., Meylan, G., Shajib, A. J., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., da Costa, L. N., De Vicente, J., Desai, S., Doel, P., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Goldstein, D. A., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., and Tarle, G. H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723. United States: N. p., 2019. Web. doi:10.1093/mnras/stz2483.
Sluse, D., Rusu, C. E., Fassnacht, C. D., Sonnenfeld, A., Richard, J., Auger, M. W., Coccato, L., Wong, K. C., Suyu, S. H., Treu, T., Agnello, A., Birrer, S., Bonvin, V., Collett, T., Courbin, F., Hilbert, S., Koopmans, L. V. E., Tihhanova, O., Marshall, P. J., Meylan, G., Shajib, A. J., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., da Costa, L. N., De Vicente, J., Desai, S., Doel, P., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Goldstein, D. A., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., & Tarle, G. H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723. United States. doi:10.1093/mnras/stz2483.
Sluse, D., Rusu, C. E., Fassnacht, C. D., Sonnenfeld, A., Richard, J., Auger, M. W., Coccato, L., Wong, K. C., Suyu, S. H., Treu, T., Agnello, A., Birrer, S., Bonvin, V., Collett, T., Courbin, F., Hilbert, S., Koopmans, L. V. E., Tihhanova, O., Marshall, P. J., Meylan, G., Shajib, A. J., Annis, J., Avila, S., Bertin, E., Brooks, D., Buckley-Geer, E., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., da Costa, L. N., De Vicente, J., Desai, S., Doel, P., Evrard, A. E., Flaugher, B., Frieman, J., García-Bellido, J., Gerdes, D. W., Goldstein, D. A., Gruendl, R. A., Gschwend, J., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Krause, E., Kuehn, K., Kuropatkin, N., Lima, M., Lin, H., Maia, M. A. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Plazas, A. A., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., and Tarle, G. Thu . "H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723". United States. doi:10.1093/mnras/stz2483.
@article{osti_1556959,
title = {H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033-4723},
author = {Sluse, D. and Rusu, C. E. and Fassnacht, C. D. and Sonnenfeld, A. and Richard, J. and Auger, M. W. and Coccato, L. and Wong, K. C. and Suyu, S. H. and Treu, T. and Agnello, A. and Birrer, S. and Bonvin, V. and Collett, T. and Courbin, F. and Hilbert, S. and Koopmans, L. V. E. and Tihhanova, O. and Marshall, P. J. and Meylan, G. and Shajib, A. J. and Annis, J. and Avila, S. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and da Costa, L. N. and De Vicente, J. and Desai, S. and Doel, P. and Evrard, A. E. and Flaugher, B. and Frieman, J. and García-Bellido, J. and Gerdes, D. W. and Goldstein, D. A. and Gruendl, R. A. and Gschwend, J. and Hartley, W. G. and Hollowood, D. L. and Honscheid, K. and James, D. J. and Kim, A. G. and Krause, E. and Kuehn, K. and Kuropatkin, N. and Lima, M. and Lin, H. and Maia, M. A. G. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Plazas, A. A. and Sanchez, E. and Serrano, S. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G.},
abstractNote = {Galaxies and galaxy groups located along the line of sight towards gravitationally lensed quasars produce high-order perturbations of the gravitational potential at the lens position. When these perturbation are too large, they can induce a systematic error on H0 of a few percent if the lens system is used for cosmological inference and the perturbers are not explicitly accounted for in the lens model. In this work, we present a detailed characterization of the environment of the lens system WFI 2033-4723 ($z_{\rm src} =\,$1.662, $z_{\rm lens}=\,$0.6575), one of the core targets of the H0LiCOW project for which we present cosmological inferences in a companion paper. We use the Gemini and ESO-Very Large telescopes to measure the spectroscopic redshifts of the brightest galaxies towards the lens, and use the ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the lens ($\sigma _{\rm {los}}= 250^{+15}_{-21}$ km s-1) and of several nearby galaxies. In addition, we measure photometric redshifts and stellar masses of all galaxies down to i < 23 mag, mainly based on Dark Energy Survey imaging (DR1). Our new catalogue, complemented with literature data, more than doubles the number of known galaxy spectroscopic redshifts in the direct vicinity of the lens, expanding to 116 (64) the number of spectroscopic redshifts for galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the flexion-shift as a measure of the amplitude of the gravitational perturbation, we identify two galaxy groups and three galaxies that require specific attention in the lens models. The ESO MUSE data enable us to measure the velocity-dispersions of three of these galaxies. These results are essential for the cosmological inference analysis presented in Rusu et al.},
doi = {10.1093/mnras/stz2483},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 1,
volume = 490,
place = {United States},
year = {2019},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 5, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

easyaccess: Enhanced SQL command line interpreter for astronomical surveys
journal, January 2019

  • Carrasco Kind, Matias; Drlica-Wagner, Alex; Koziol, Audrey
  • Journal of Open Source Software, Vol. 4, Issue 33
  • DOI: 10.21105/joss.01022

Gravitational lens Modeling with Basis sets
journal, November 2015


MUSE deep-fields: the Ly α luminosity function in the Hubble Deep Field-South at 2.91 < z < 6.64
journal, July 2017

  • Drake, Alyssa B.; Guiderdoni, Bruno; Blaizot, Jérémy
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 1
  • DOI: 10.1093/mnras/stx1515

SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes
journal, May 2004

  • Hook, I. M.; Jørgensen, Inger; Allington‐Smith, J. R.
  • Publications of the Astronomical Society of the Pacific, Vol. 116, Issue 819
  • DOI: 10.1086/383624

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds
journal, June 1998

  • Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc
  • The Astrophysical Journal, Vol. 500, Issue 2
  • DOI: 10.1086/305772

Measures of location and scale for velocities in clusters of galaxies - A robust approach
journal, July 1990

  • Beers, Timothy C.; Flynn, Kevin; Gebhardt, Karl
  • The Astronomical Journal, Vol. 100
  • DOI: 10.1086/115487

The Statistical Nature of the Brightest Group Galaxies
journal, January 2014


Disentangling Baryons and dark Matter in the Spiral Gravitational lens B1933+503
journal, April 2012


PHAT: PHoto- z Accuracy Testing
journal, November 2010


The Infrared Array Camera (IRAC) for the Spitzer Space Telescope
journal, September 2004

  • Fazio, G. G.; Hora, J. L.; Allen, L. E.
  • The Astrophysical Journal Supplement Series, Vol. 154, Issue 1
  • DOI: 10.1086/422843

A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses
journal, August 2015

  • Momcheva, Ivelina G.; Williams, Kurtis A.; Cool, Richard J.
  • The Astrophysical Journal Supplement Series, Vol. 219, Issue 2
  • DOI: 10.1088/0067-0049/219/2/29

The Multiwavelength Survey by Yale‐Chile (MUSYC): Survey Design and Deep Public UBVRI z Images and Catalogs of the Extended Hubble Deep Field–South
journal, January 2006

  • Gawiser, Eric; van Dokkum, Pieter G.; Herrera, David
  • The Astrophysical Journal Supplement Series, Vol. 162, Issue 1
  • DOI: 10.1086/497644

lenstronomy: Multi-purpose gravitational lens modelling software package
journal, December 2018


The Indo‐US Library of Coude Feed Stellar Spectra
journal, June 2004

  • Valdes, Francisco; Gupta, Ranjan; Rose, James A.
  • The Astrophysical Journal Supplement Series, Vol. 152, Issue 2
  • DOI: 10.1086/386343

H0LiCOW – III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts★
journal, February 2017

  • Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique
  • Monthly Notices of the Royal Astronomical Society, Vol. 467, Issue 4
  • DOI: 10.1093/mnras/stx285

H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview
journal, February 2017

  • Suyu, S. H.; Bonvin, V.; Courbin, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 3
  • DOI: 10.1093/mnras/stx483

The dark Energy Camera
journal, October 2015


ZAP – enhanced PCA sky subtraction for integral field spectroscopy
journal, March 2016

  • Soto, Kurt T.; Lilly, Simon J.; Bacon, Roland
  • Monthly Notices of the Royal Astronomical Society, Vol. 458, Issue 3
  • DOI: 10.1093/mnras/stw474

Survey of Gravitationally Lensed Objects in HSC Imaging (SuGOHI). II. Environments and Line-of-Sight Structure of Strong Gravitational Lens Galaxies to z ∼ 0.8
journal, November 2018

  • Wong, Kenneth C.; Sonnenfeld, Alessandro; Chan, James H. H.
  • The Astrophysical Journal, Vol. 867, Issue 2
  • DOI: 10.3847/1538-4357/aae381

The halos of satellite galaxies: the companion of the massive elliptical lens SL2S J08544−0121
journal, November 2010


Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring
journal, July 2015

  • Hoshino, Hanako; Leauthaud, Alexie; Lackner, Claire
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 1
  • DOI: 10.1093/mnras/stv1271

Galaxy number counts and implications for strong lensing: Galaxy number counts and strong lensing
journal, October 2010


COSMOGRAIL: XVIII. time delays of the quadruply lensed quasar WFI2033−4723⋆
journal, September 2019


CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products
journal, June 2013

  • Erben, T.; Hildebrandt, H.; Miller, L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 3
  • DOI: 10.1093/mnras/stt928

A new hybrid framework to efficiently model lines of sight to gravitational lenses
journal, August 2014

  • McCully, Curtis; Keeton, Charles R.; Wong, Kenneth C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 443, Issue 4
  • DOI: 10.1093/mnras/stu1316

The Dark Energy Survey: Data Release 1
journal, November 2018

  • Abbott, T. M. C.; Abdalla, F. B.; Allam, S.
  • The Astrophysical Journal Supplement Series, Vol. 239, Issue 2
  • DOI: 10.3847/1538-4365/aae9f0

The Dark Energy Survey Image Processing Pipeline
journal, May 2018

  • Morganson, E.; Gruendl, R. A.; Menanteau, F.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 989
  • DOI: 10.1088/1538-3873/aab4ef

Dissecting the Gravitational lens B1608+656. ii. Precision Measurements of the Hubble Constant, Spatial Curvature, and the dark Energy Equation of State
journal, February 2010


GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY
journal, January 2010


Microlensing of the broad-line region in the quadruply imaged quasar HE0435-1223
journal, May 2014


Automated data reduction workflows for astronomy: The ESO Reflex environment
journal, November 2013


Astropy: A community Python package for astronomy
journal, September 2013


Improving time-delay cosmography with spatially resolved kinematics
journal, September 2017

  • Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 1
  • DOI: 10.1093/mnras/stx2302

The Sloan lens acs Survey. ix. Colors, Lensing, and Stellar Masses of Early-Type Galaxies
journal, October 2009


CFHTLenS: improving the quality of photometric redshifts with precision photometry★: CFHTLenS: photometric redshifts
journal, February 2012


Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems
journal, February 2017


A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: the Group Catalog
journal, December 2016

  • Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark
  • The Astrophysical Journal, Vol. 833, Issue 2
  • DOI: 10.3847/1538-4357/833/2/194

Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

The Internal Structure and Formation of Early‐Type Galaxies: The Gravitational Lens System MG 2016+112 at z = 1.004
journal, August 2002

  • Treu, Tommaso; Koopmans, Leon V. E.
  • The Astrophysical Journal, Vol. 575, Issue 1
  • DOI: 10.1086/341216

Galactic Stellar and Substellar Initial Mass Function
journal, July 2003

  • Chabrier, Gilles
  • Publications of the Astronomical Society of the Pacific, Vol. 115, Issue 809
  • DOI: 10.1086/376392

The Two Micron All Sky Survey (2MASS)
journal, February 2006

  • Skrutskie, M. F.; Cutri, R. M.; Stiening, R.
  • The Astronomical Journal, Vol. 131, Issue 2
  • DOI: 10.1086/498708

Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar
journal, October 2015


T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry
journal, September 2015


THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7
journal, December 2016

  • Zahid, H. Jabran; Geller, Margaret J.; Fabricant, Daniel G.
  • The Astrophysical Journal, Vol. 832, Issue 2
  • DOI: 10.3847/0004-637X/832/2/203

WFI J2026-4536 and WFI J2033-4723: Two New Quadruple Gravitational Lenses
journal, May 2004

  • Morgan, Nicholas D.; Caldwell, John A. R.; Schechter, Paul L.
  • The Astronomical Journal, Vol. 127, Issue 5
  • DOI: 10.1086/383295

Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1): GAMA: the GAMA galaxy group catalogue (G3Cv1)
journal, July 2011


Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts
journal, March 2003

  • Labbé, Ivo; Franx, Marijn; Rudnick, Gregory
  • The Astronomical Journal, Vol. 125, Issue 3
  • DOI: 10.1086/346140

COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: VII. Time delays and the Hubble constant from WFI J2033–4723
journal, July 2008


Microlensing of the broad line region in 17 lensed quasars
journal, July 2012


Design and capabilities of the MUSE data reduction software and pipeline
conference, September 2012

  • Weilbacher, Peter M.; Streicher, Ole; Urrutia, Tanya
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.925114

The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant
journal, September 2002


Measuring the redshift evolution of clustering: the Hubble Deep Field South
journal, January 2002


Evidence for dark Matter Contraction and a Salpeter Initial mass Function in a Massive Early-Type Galaxy
journal, June 2012


Stellar population synthesis at the resolution of 2003
journal, October 2003


Reconstructing the lensing mass in the Universe from photometric catalogue data
journal, April 2013

  • Collett, Thomas E.; Marshall, Philip J.; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 1
  • DOI: 10.1093/mnras/stt504

The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies
journal, July 2007

  • Quadri, Ryan; Marchesini, Danilo; van Dokkum, Pieter
  • The Astronomical Journal, Vol. 134, Issue 3
  • DOI: 10.1086/520330

Dynamical analysis of strong-lensing galaxy groups at intermediate redshift
journal, March 2013


H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435−1223
journal, June 2017

  • Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 4
  • DOI: 10.1093/mnras/stx1484

Galaxy groups at 0.3 ≤ z ≤ 0.55 - I. Group properties
journal, March 2005


HAWK-I: the high-acuity wide-field K -band imager for the ESO Very Large Telescope
journal, October 2008


EAZY: A Fast, Public Photometric Redshift Code
journal, October 2008

  • Brammer, Gabriel B.; van Dokkum, Pieter G.; Coppi, Paolo
  • The Astrophysical Journal, Vol. 686, Issue 2
  • DOI: 10.1086/591786