DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy

Abstract

Lignin is a major impediment in the deconstruction of plant biomass to its soluble monomeric constituents. Modification of the lignin biosynthetic pathway has proven to be an effective means of reducing biomass recalcitrance but can often result in impaired growth. As one of the successful instances of “designer” biomass, “Zip-lignin” has been generated in poplar to introduce ester linkages into the lignin backbone. The resulting plants grow normally and have improved biomass deconstructability, especially under mild alkaline conditions that can effectively cleave the uniquely introduced ester bonds. In order to further understand the structural and chemical features that may be associated with the observed improved processing efficiency, we used hyperspectral stimulated Raman scattering (hsSRS) to map the Zip-lignin in planta using lignin conjugated α–β carbon double bonds as the proxy. Such double bonds are introduced in all types of lignin, but unique structures in Zip-lignins experience a ~20 cm–1 shift from 1650 to 1630 cm–1 in their Raman spectra due to the conjugation between the double bond and an associated ester carbonyl group. Analysis of the hsSRS images has revealed that the Raman signal specifically representing Zip-lignin can be estimated. Moreover, it exhibits a distribution pattern in cell wall layersmore » similar to that of the native lignin, but its intensity varies in different transgenic poplar lines. In addition, when the cell walls are imaged by atomic force microscopy and Simons’ staining, we found that the poplar containing the Zip-lignin had increased accessible areas, which may be beneficial to the chemical penetration during pretreatment and substrate accessibility during enzymatic hydrolysis. Our work indicates that both physical and chemical modification of cell wall in Zip-lignin poplar could contribute to the observed improvements in sugar yields.« less

Authors:
 [1];  [1];  [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [1]
  1. Michigan State Univ., East Lansing, MI (United States); USDOE Great Lakes Bioenergy Research Center (GLBRC), East Lansing, MI (United States)
  2. Michigan State Univ., East Lansing, MI (United States)
  3. USDOE Great Lakes Bioenergy Research Center (GLBRC), East Lansing, MI (United States); Univ. of Wisconsin−Madison, Madison, WI (United States)
  4. USDOE Great Lakes Bioenergy Research Center (GLBRC), East Lansing, MI (United States); Univ. of British Columbia, Vancouver, BC (Canada)
Publication Date:
Research Org.:
Great Lakes Bioenergy Research Center (GLBRC), Madison, WI (United States); Michigan State Univ., East Lansing, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1556072
Alternate Identifier(s):
OSTI ID: 1594860
Grant/Contract Number:  
SC0018409; SC0019072
Resource Type:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 7; Journal Issue: 12; Journal ID: ISSN 2168-0485
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; Hyperspectral imaging; Simons’ Stain; Poplar cell walls; Biomass pretreatment; Cell wall porosity; 09 BIOMASS FUELS; Hyperspectral imaging, Simons’ Stain, Poplar cell walls, Biomass pretreatment, Cell wall porosity

Citation Formats

Shen, Wei, Collings, Cynthia, Li, Muyang, Markovicz, Jake, Ralph, John, Mansfield, Shawn D., and Ding, Shi-You. Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy. United States: N. p., 2019. Web. doi:10.1021/acssuschemeng.9b01166.
Shen, Wei, Collings, Cynthia, Li, Muyang, Markovicz, Jake, Ralph, John, Mansfield, Shawn D., & Ding, Shi-You. Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy. United States. https://doi.org/10.1021/acssuschemeng.9b01166
Shen, Wei, Collings, Cynthia, Li, Muyang, Markovicz, Jake, Ralph, John, Mansfield, Shawn D., and Ding, Shi-You. Mon . "Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy". United States. https://doi.org/10.1021/acssuschemeng.9b01166. https://www.osti.gov/servlets/purl/1556072.
@article{osti_1556072,
title = {Imaging Changes in Cell Walls of Engineered Poplar by Stimulated Raman Scattering and Atomic Force Microscopy},
author = {Shen, Wei and Collings, Cynthia and Li, Muyang and Markovicz, Jake and Ralph, John and Mansfield, Shawn D. and Ding, Shi-You},
abstractNote = {Lignin is a major impediment in the deconstruction of plant biomass to its soluble monomeric constituents. Modification of the lignin biosynthetic pathway has proven to be an effective means of reducing biomass recalcitrance but can often result in impaired growth. As one of the successful instances of “designer” biomass, “Zip-lignin” has been generated in poplar to introduce ester linkages into the lignin backbone. The resulting plants grow normally and have improved biomass deconstructability, especially under mild alkaline conditions that can effectively cleave the uniquely introduced ester bonds. In order to further understand the structural and chemical features that may be associated with the observed improved processing efficiency, we used hyperspectral stimulated Raman scattering (hsSRS) to map the Zip-lignin in planta using lignin conjugated α–β carbon double bonds as the proxy. Such double bonds are introduced in all types of lignin, but unique structures in Zip-lignins experience a ~20 cm–1 shift from 1650 to 1630 cm–1 in their Raman spectra due to the conjugation between the double bond and an associated ester carbonyl group. Analysis of the hsSRS images has revealed that the Raman signal specifically representing Zip-lignin can be estimated. Moreover, it exhibits a distribution pattern in cell wall layers similar to that of the native lignin, but its intensity varies in different transgenic poplar lines. In addition, when the cell walls are imaged by atomic force microscopy and Simons’ staining, we found that the poplar containing the Zip-lignin had increased accessible areas, which may be beneficial to the chemical penetration during pretreatment and substrate accessibility during enzymatic hydrolysis. Our work indicates that both physical and chemical modification of cell wall in Zip-lignin poplar could contribute to the observed improvements in sugar yields.},
doi = {10.1021/acssuschemeng.9b01166},
journal = {ACS Sustainable Chemistry & Engineering},
number = 12,
volume = 7,
place = {United States},
year = {Mon May 27 00:00:00 EDT 2019},
month = {Mon May 27 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share: