DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1550552
Grant/Contract Number:  
EE0005763/00011
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Computers and Chemical Engineering
Additional Journal Information:
Journal Name: Computers and Chemical Engineering Journal Volume: 107 Journal Issue: C; Journal ID: ISSN 0098-1354
Publisher:
Elsevier
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Kumar, Ankur, Edgar, Thomas F., and Baldea, Michael. Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field. United Kingdom: N. p., 2017. Web. doi:10.1016/j.compchemeng.2017.02.040.
Kumar, Ankur, Edgar, Thomas F., & Baldea, Michael. Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field. United Kingdom. https://doi.org/10.1016/j.compchemeng.2017.02.040
Kumar, Ankur, Edgar, Thomas F., and Baldea, Michael. Fri . "Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field". United Kingdom. https://doi.org/10.1016/j.compchemeng.2017.02.040.
@article{osti_1550552,
title = {Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field},
author = {Kumar, Ankur and Edgar, Thomas F. and Baldea, Michael},
abstractNote = {},
doi = {10.1016/j.compchemeng.2017.02.040},
journal = {Computers and Chemical Engineering},
number = C,
volume = 107,
place = {United Kingdom},
year = {Fri Dec 01 00:00:00 EST 2017},
month = {Fri Dec 01 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Real-time optimization of an industrial steam-methane reformer under distributed sensing
journal, September 2016


Modelling and Simulation of a Top-Fired Primary Steam Reformer using GPROMS
journal, January 2002

  • Dunn, A. J.; Yustos, J.; Mujtaba, I. M.
  • Developments in Chemical Engineering and Mineral Processing, Vol. 10, Issue 1-2
  • DOI: 10.1002/apj.5500100107

Process simulation of natural gas steam reforming: Fuel distribution optimisation in the furnace
journal, June 2008


Coupled simulation of heat transfer and reaction in a steam reforming furnace
journal, January 1989

  • Plehiers, Patrick M.; Froment, Gilbert F.
  • Chemical Engineering & Technology - CET, Vol. 12, Issue 1
  • DOI: 10.1002/ceat.270120105

A dynamic two-dimensional heterogeneous model for water gas shift reactors
journal, November 2009


Exergy analysis of hydrogen production via steam methane reforming
journal, December 2007


Smart Manufacturing Approach for Efficient Operation of Industrial Steam-Methane Reformers
journal, January 2015

  • Kumar, Ankur; Baldea, Michael; Edgar, Thomas F.
  • Industrial & Engineering Chemistry Research, Vol. 54, Issue 16
  • DOI: 10.1021/ie504087z

Modeling and simulation of a top-fired reformer
journal, October 1988

  • Murty, C. V. S.; Murthy, M. V. Krishna
  • Industrial & Engineering Chemistry Research, Vol. 27, Issue 10
  • DOI: 10.1021/ie00082a016

Heat and Power Integration of Methane Reforming Based Hydrogen Production
journal, November 2005

  • Posada, Alberto; Manousiouthakis, Vasilios
  • Industrial & Engineering Chemistry Research, Vol. 44, Issue 24
  • DOI: 10.1021/ie049041k

Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics
journal, January 1989


Multi-objective optimization of industrial hydrogen plants
journal, February 2001


Tubular reforming and autothermal reforming of natural gas — an overview of available processes
journal, April 1995


Analysis of the Thermal Efficiency Limit of the Steam Methane Reforming Process
journal, December 2012

  • Peng, X. D.
  • Industrial & Engineering Chemistry Research, Vol. 51, Issue 50
  • DOI: 10.1021/ie3002843

A unified model for top fired methane steam reformers using three-dimensional zonal analysis
journal, May 2008

  • Zamaniyan, Akbar; Ebrahimi, Hadi; Mohammadzadeh, Jafar S. Soltan
  • Chemical Engineering and Processing: Process Intensification, Vol. 47, Issue 5
  • DOI: 10.1016/j.cep.2007.03.005

Smart Manufacturing
journal, July 2015


Chemical Process Simulation for Dynamic Risk Analysis: A Steam–Methane Reformer Case Study
journal, January 2015

  • Moskowitz, Ian H.; Seider, Warren D.; Soroush, Masoud
  • Industrial & Engineering Chemistry Research, Vol. 54, Issue 16
  • DOI: 10.1021/ie5038769

Equation-oriented flowsheet simulation and optimization using pseudo-transient models
journal, August 2014

  • Pattison, Richard C.; Baldea, Michael
  • AIChE Journal, Vol. 60, Issue 12
  • DOI: 10.1002/aic.14567

Simulation of Side Fired Steam-Hydrocarbon Reformers
journal, January 1979

  • Singh, Chandra P. P.; Saraf, Deoki N.
  • Industrial & Engineering Chemistry Process Design and Development, Vol. 18, Issue 1
  • DOI: 10.1021/i260069a001

Structure, Energy, Synergy, TimeThe Fundamentals of Process Intensification
journal, March 2009

  • Van Gerven, Tom; Stankiewicz, Andrzej
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 5
  • DOI: 10.1021/ie801501y

On optimal sensing and actuation design for an industrial scale steam methane reformer furnace
journal, June 2016

  • Kumar, Ankur; Baldea, Michael; Edgar, Thomas F.
  • AIChE Journal, Vol. 62, Issue 9
  • DOI: 10.1002/aic.15333

Three-Dimensional Asymmetric Flow and Temperature Fields in Cracking Furnaces
journal, November 2001

  • Oprins, Arno J. M.; Heynderickx, Geraldine J.; Marin, Guy B.
  • Industrial & Engineering Chemistry Research, Vol. 40, Issue 23
  • DOI: 10.1021/ie0010114

Deploying Kepler Workflows as Services on a Cloud Infrastructure for Smart Manufacturing
journal, January 2014


Smart manufacturing, manufacturing intelligence and demand-dynamic performance
journal, December 2012


Mathematical modeling of an industrial steam-methane reformer for on-line deployment
journal, August 2011


A Smart Manufacturing Use Case: Furnace Temperature Balancing in Steam Methane Reforming Process via Kepler Workflows
journal, January 2016


Triple-Objective Optimization of an Industrial Hydrogen Plant.
journal, January 2001

  • Oh, P. P.; Ray, Ajay K.; Rangaiah, G. P.
  • JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Vol. 34, Issue 11
  • DOI: 10.1252/jcej.34.1341