DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction

Abstract

Synchrotron-based high-energy X-ray diffraction is used to explore the physical origin of large magnetostriction in DyCo2, an RT2 compound (R = rare earth, T = Co, Fe), by tracing the crystal structural change as a function of temperature and magnetic field. When the DyCo2 compound is zero-field cooled down below the Curie temperature TC, the high-temperature cubic lattice is distorted into a tetragonal structure, associated with an expansion of unit cell volume. When a magnetic field is applied gradually from 0 to 6 T below TC, no changes in the peak positions for tetragonal (800)T and (008)T peaks are observed, whereas their relative peak intensities are gradually changed. The intensity changes generated during magnetic field increasing are reversed stepwise with decreasing the magnetic field. Our experimental results suggest that the large magnetostriction in DyCo2 is caused by the crystallographic domain-switch mechanism (or rearrangement of tetragonal domains). In conclusion, the diffraction elastic strain is not detected under the field up to 6 T. The present investigations provide a fundamental understanding of the mechanisms of the large magnetostriction in RT2 compounds with Laves phases.

Authors:
ORCiD logo [1];  [1];  [2];  [3];  [4];  [5];  [3]
  1. Beijing Institute of Technology, Beijing (China)
  2. Xi'an Jiaotong Univ., Xi'an (China)
  3. Univ. of Science and Technology Beijing, Beijing (China)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Northern Illinois Univ., DeKalb, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Natural Science Foundation of China (NSFC); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1460087
Alternate Identifier(s):
OSTI ID: 1549564
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Alloys and Compounds
Additional Journal Information:
Journal Volume: 724; Journal Issue: C; Journal ID: ISSN 0925-8388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Magnetostriction; Domain switching; Diffraction elastic strain; High-energy X-ray diffraction; DyCo2

Citation Formats

Nie, Zhihua, Wang, Zilong, Yang, Sen, Cong, Daoyong, Ren, Yang, Brown, Dennis E., and Wang, Yan-dong. In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction. United States: N. p., 2017. Web. doi:10.1016/j.jallcom.2017.07.106.
Nie, Zhihua, Wang, Zilong, Yang, Sen, Cong, Daoyong, Ren, Yang, Brown, Dennis E., & Wang, Yan-dong. In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction. United States. https://doi.org/10.1016/j.jallcom.2017.07.106
Nie, Zhihua, Wang, Zilong, Yang, Sen, Cong, Daoyong, Ren, Yang, Brown, Dennis E., and Wang, Yan-dong. Wed . "In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction". United States. https://doi.org/10.1016/j.jallcom.2017.07.106. https://www.osti.gov/servlets/purl/1460087.
@article{osti_1460087,
title = {In-situ studies of large magnetostriction in DyCo2 compound by synchrotron-based high-energy X-ray diffraction},
author = {Nie, Zhihua and Wang, Zilong and Yang, Sen and Cong, Daoyong and Ren, Yang and Brown, Dennis E. and Wang, Yan-dong},
abstractNote = {Synchrotron-based high-energy X-ray diffraction is used to explore the physical origin of large magnetostriction in DyCo2, an RT2 compound (R = rare earth, T = Co, Fe), by tracing the crystal structural change as a function of temperature and magnetic field. When the DyCo2 compound is zero-field cooled down below the Curie temperature TC, the high-temperature cubic lattice is distorted into a tetragonal structure, associated with an expansion of unit cell volume. When a magnetic field is applied gradually from 0 to 6 T below TC, no changes in the peak positions for tetragonal (800)T and (008)T peaks are observed, whereas their relative peak intensities are gradually changed. The intensity changes generated during magnetic field increasing are reversed stepwise with decreasing the magnetic field. Our experimental results suggest that the large magnetostriction in DyCo2 is caused by the crystallographic domain-switch mechanism (or rearrangement of tetragonal domains). In conclusion, the diffraction elastic strain is not detected under the field up to 6 T. The present investigations provide a fundamental understanding of the mechanisms of the large magnetostriction in RT2 compounds with Laves phases.},
doi = {10.1016/j.jallcom.2017.07.106},
journal = {Journal of Alloys and Compounds},
number = C,
volume = 724,
place = {United States},
year = {Wed Jul 12 00:00:00 EDT 2017},
month = {Wed Jul 12 00:00:00 EDT 2017}
}

Journal Article:

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share: