DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques

Abstract

Transition metal sulfides are promising high capacity anodes for sodium-ion batteries in terms of the conversion reaction with multiple alkali metal ions. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change, and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding the complex sodium ion storage mechanism particularly at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemical impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ions diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Finally, such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [4];  [4];  [2]
  1. Harbin Inst. of Technology (China). MIIT Key Lab. of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)
  3. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division
  4. Harbin Inst. of Technology (China). MIIT Key Lab. of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1433998
Alternate Identifier(s):
OSTI ID: 1436251; OSTI ID: 1461325; OSTI ID: 1549080
Report Number(s):
BNL-203536-2018-JAAM; BNL-203493-2018-JAAM
Journal ID: ISSN 2211-2855
Grant/Contract Number:  
SC0012704; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nano Energy
Additional Journal Information:
Journal Volume: 43; Journal Issue: C; Journal ID: ISSN 2211-2855
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Metal sulfides; Conversion mechanism; In operando; Synchrotron techniques; Sodium-ion batteries; 36 MATERIALS SCIENCE

Citation Formats

Wang, Liguang, Wang, Jiajun, Guo, Fangmin, Ma, Lu, Ren, Yang, Wu, Tianpin, Zuo, Pengjian, Yin, Geping, and Wang, Jun. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. United States: N. p., 2018. Web. doi:10.1016/j.nanoen.2017.11.029.
Wang, Liguang, Wang, Jiajun, Guo, Fangmin, Ma, Lu, Ren, Yang, Wu, Tianpin, Zuo, Pengjian, Yin, Geping, & Wang, Jun. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques. United States. https://doi.org/10.1016/j.nanoen.2017.11.029
Wang, Liguang, Wang, Jiajun, Guo, Fangmin, Ma, Lu, Ren, Yang, Wu, Tianpin, Zuo, Pengjian, Yin, Geping, and Wang, Jun. Tue . "Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques". United States. https://doi.org/10.1016/j.nanoen.2017.11.029. https://www.osti.gov/servlets/purl/1433998.
@article{osti_1433998,
title = {Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques},
author = {Wang, Liguang and Wang, Jiajun and Guo, Fangmin and Ma, Lu and Ren, Yang and Wu, Tianpin and Zuo, Pengjian and Yin, Geping and Wang, Jun},
abstractNote = {Transition metal sulfides are promising high capacity anodes for sodium-ion batteries in terms of the conversion reaction with multiple alkali metal ions. Nonetheless, some inherent challenges such as sluggish sodium ion diffusion kinetics, large volume change, and poor cycle stability limit their implementation. Addressing these issues necessitates a comprehensive understanding the complex sodium ion storage mechanism particularly at the initial cycle. Here, taking nickel subsulfide as a model material, we reveal the complicated conversion reaction mechanism upon the first cycle by combining in operando 2D transmission X-ray microscopy with X-ray absorption spectroscopy, ex-situ 3D nano-tomography, high-energy X-ray diffraction and electrochemical impedance spectroscopy. This study demonstrates that the microstructure evolution, inherent slow sodium ions diffusion kinetics, and slow ion mobility at the two-phase interface contribute to the high irreversible capacity upon the first cycle. Finally, such understandings are critical for developing the conversion reaction materials with the desired electrochemical activity and stability.},
doi = {10.1016/j.nanoen.2017.11.029},
journal = {Nano Energy},
number = C,
volume = 43,
place = {United States},
year = {Tue Nov 13 00:00:00 EST 2018},
month = {Tue Nov 13 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 50 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1. Table 1.: Parameters obtained by the fitting of Ni K-edge spectra of Ni3S2 electrode at different states.

Save / Share:

Works referenced in this record:

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Understanding and recent development of carbon coating on LiFePO 4 cathode materials for lithium-ion batteries
journal, January 2012

  • Wang, Jiajun; Sun, Xueliang
  • Energy Environ. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C1EE01263K

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena
journal, July 2014

  • Jache, Birte; Adelhelm, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 38
  • DOI: 10.1002/anie.201403734

Expanded graphite as superior anode for sodium-ion batteries
journal, June 2014

  • Wen, Yang; He, Kai; Zhu, Yujie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5033

High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
journal, January 2000

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393348

MoS 2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries
journal, September 2014


MoS 2 /Graphene Composite Paper for Sodium-Ion Battery Electrodes
journal, January 2014

  • David, Lamuel; Bhandavat, Romil; Singh, Gurpreet
  • ACS Nano, Vol. 8, Issue 2
  • DOI: 10.1021/nn406156b

Graphene-Coupled Flower-Like Ni3S2 for a Free-Standing 3D Aerogel with an Ultra-High Electrochemical Capacity
journal, February 2016


Degradation mechanism of room temperature Na/Ni3S2 cells using Ni3S2 electrodes prepared by mechanical alloying
journal, December 2013


Elucidating the Irreversible Mechanism and Voltage Hysteresis in Conversion Reaction for High-Energy Sodium-Metal Sulfide Batteries
journal, March 2017

  • Wang, Jiajun; Wang, Liguang; Eng, Christopher
  • Advanced Energy Materials, Vol. 7, Issue 14
  • DOI: 10.1002/aenm.201602706

Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale
journal, January 2012

  • Harris, William M.; Nelson, George J.; Kiss, Andrew M.
  • Nanoscale, Vol. 4, Issue 5
  • DOI: 10.1039/c2nr11690a

Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries
journal, March 2016


Room-Temperature Mechanosynthesis of Ni[sub 3]S[sub 2] as Cathode Material for Rechargeable Lithium Polymer Batteries
journal, January 2006

  • Zhu, Xiujian; Wen, Zhaoyin; Gu, Zhonghua
  • Journal of The Electrochemical Society, Vol. 153, Issue 3
  • DOI: 10.1149/1.2163808

In Situ Fabrication of CoS and NiS Nanomaterials Anchored on Reduced Graphene Oxide for Reversible Lithium Storage
journal, June 2016

  • Tan, Yingbin; Liang, Ming; Lou, Peili
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 23
  • DOI: 10.1021/acsami.6b01003

Formation of 1D Hierarchical Structures Composed of Ni 3 S 2 Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H 2 Production
journal, October 2012


In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging
journal, January 2013

  • Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun
  • Chemical Communications, Vol. 49, Issue 58
  • DOI: 10.1039/c3cc42667j

In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy
journal, August 2014

  • Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5570

Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries
journal, April 2017


The discharge properties of Na/Ni3S2 cell at ambient temperature
journal, April 2008


The addition of iron to Ni3S2 electrode for sodium secondary battery
journal, January 2011


Electrodeposition of Nis 3 S 2 /Ni Composites as High-Performance Cathodes for Lithium Batteries
journal, December 2013

  • Su, Chang-Wei; Li, Jun-Min; Yang, Wei
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp407185p

Improved electrochemical performance and capacity fading mechanism of nano-sized LiMn 0.9 Fe 0.1 PO 4 cathode modified by polyacene coating
journal, January 2015

  • Wang, Liguang; Zuo, Pengjian; Yin, Geping
  • Journal of Materials Chemistry A, Vol. 3, Issue 4
  • DOI: 10.1039/C4TA05900J

Phase Separations in LiFe 1– x Mn x PO 4 : A Random Stack Model for Efficient Cathode Materials
journal, December 2013

  • Huang, Weifeng; Tao, Shi; Zhou, Jing
  • The Journal of Physical Chemistry C, Vol. 118, Issue 2
  • DOI: 10.1021/jp4081564

Works referencing / citing this record:

Simple and scalable synthesis of CuS as an ultrafast and long-cycling anode for sodium ion batteries
journal, January 2019

  • Kim, Huihun; Sadan, Milan K.; Kim, Changhyeon
  • Journal of Materials Chemistry A, Vol. 7, Issue 27
  • DOI: 10.1039/c9ta04640b

Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode
text, January 2019

  • Tian, Guiying; Zhao, Zijian; Sarapulova, Angelina
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-00236

Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes
journal, January 2018

  • Zhu, Xinxin; Liu, Dan; Zheng, Dong
  • Journal of Materials Chemistry A, Vol. 6, Issue 27
  • DOI: 10.1039/c8ta03444c

Enhanced pseudocapacitance contribution to outstanding Li-storage performance for a reduced graphene oxide-wrapped FeS composite anode
journal, January 2018

  • Huang, Mingbao; Xu, Anding; Duan, Huanhuan
  • Journal of Materials Chemistry A, Vol. 6, Issue 16
  • DOI: 10.1039/c8ta00740c

Cyclic utilisation of waste tires as nanostructured anode materials for Li-ion batteries
journal, January 2020


Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode
journal, January 2019

  • Tian, Guiying; Zhao, Zijian; Sarapulova, Angelina
  • Journal of Materials Chemistry A, Vol. 7, Issue 26
  • DOI: 10.1039/c9ta01382b

Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.