DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying the flow efficiency in constant-current capacitive deionization

Abstract

In this work, we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation.

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [2];  [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Stanford Univ., CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1769171
Alternate Identifier(s):
OSTI ID: 1549028
Report Number(s):
LLNL-JRNL-732624
Journal ID: ISSN 0043-1354; 884206
Grant/Contract Number:  
AC52-07NA27344; 15-ERD-068
Resource Type:
Accepted Manuscript
Journal Name:
Water Research
Additional Journal Information:
Journal Volume: 129; Journal Issue: na; Journal ID: ISSN 0043-1354
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; materials science; capacitive desalination; capacitive deionization; CDI; flow efficiency

Citation Formats

Hawks, Steven A., Knipe, Jennifer M., Campbell, Patrick G., Loeb, Colin K., Hubert, McKenzie A., Santiago, Juan G., and Stadermann, Michael. Quantifying the flow efficiency in constant-current capacitive deionization. United States: N. p., 2017. Web. doi:10.1016/j.watres.2017.11.025.
Hawks, Steven A., Knipe, Jennifer M., Campbell, Patrick G., Loeb, Colin K., Hubert, McKenzie A., Santiago, Juan G., & Stadermann, Michael. Quantifying the flow efficiency in constant-current capacitive deionization. United States. https://doi.org/10.1016/j.watres.2017.11.025
Hawks, Steven A., Knipe, Jennifer M., Campbell, Patrick G., Loeb, Colin K., Hubert, McKenzie A., Santiago, Juan G., and Stadermann, Michael. Sat . "Quantifying the flow efficiency in constant-current capacitive deionization". United States. https://doi.org/10.1016/j.watres.2017.11.025. https://www.osti.gov/servlets/purl/1769171.
@article{osti_1769171,
title = {Quantifying the flow efficiency in constant-current capacitive deionization},
author = {Hawks, Steven A. and Knipe, Jennifer M. and Campbell, Patrick G. and Loeb, Colin K. and Hubert, McKenzie A. and Santiago, Juan G. and Stadermann, Michael},
abstractNote = {In this work, we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation.},
doi = {10.1016/j.watres.2017.11.025},
journal = {Water Research},
number = na,
volume = 129,
place = {United States},
year = {Sat Nov 11 00:00:00 EST 2017},
month = {Sat Nov 11 00:00:00 EST 2017}
}

Journal Article:

Citation Metrics:
Cited by: 59 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Optimization of salt adsorption rate in membrane capacitive deionization
journal, April 2013


Theory of Potentiostatic and Galvanostatic Charging of the Double Layer in Porous Electrodes
journal, January 1966

  • Posey, F. A.; Morozumi, T.
  • Journal of The Electrochemical Society, Vol. 113, Issue 2
  • DOI: 10.1149/1.2423897

Review on carbon-based composite materials for capacitive deionization
journal, January 2015

  • Liu, Yong; Nie, Chunyang; Liu, Xinjuan
  • RSC Advances, Vol. 5, Issue 20
  • DOI: 10.1039/C4RA14447C

Limitation of Charge Efficiency in Capacitive Deionization
journal, January 2009

  • Avraham, Eran; Bouhadana, Yaniv; Soffer, Abraham
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3115463

Theory of pH changes in water desalination by capacitive deionization
journal, August 2017


Advanced carbon aerogels for energy applications
journal, January 2011

  • Biener, Juergen; Stadermann, Michael; Suss, Matthew
  • Energy & Environmental Science, Vol. 4, Issue 3, p. 656-667
  • DOI: 10.1039/c0ee00627k

Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization
journal, May 2016


Limitations of Charge Efficiency in Capacitive Deionization
journal, January 2009

  • Avraham, Eran; Noked, Malachi; Bouhadana, Yaniv
  • Journal of The Electrochemical Society, Vol. 156, Issue 10
  • DOI: 10.1149/1.3193709

Desalination using capacitive deionization at constant current
journal, November 2013


Theory of Water Desalination by Porous Electrodes with Immobile Chemical Charge
journal, November 2015

  • Biesheuvel, P. M.; Hamelers, H. V. M.; Suss, M. E.
  • Colloids and Interface Science Communications, Vol. 9
  • DOI: 10.1016/j.colcom.2015.12.001

Enhancement of charge efficiency for a capacitive deionization cell using carbon xerogel with modified potential of zero charge
journal, February 2014


The Influence of Side Reactions on the Performance of Electrochemical Double-Layer Capacitors
journal, January 1996

  • Pillay, Bavanethan
  • Journal of The Electrochemical Society, Vol. 143, Issue 6
  • DOI: 10.1149/1.1836908

Water desalination via capacitive deionization: what is it and what can we expect from it?
journal, January 2015

  • Suss, M. E.; Porada, S.; Sun, X.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE00519A

Side Reactions in Capacitive Deionization (CDI) Processes: The Role of Oxygen Reduction
journal, December 2016


Energy consumption analysis of constant voltage and constant current operations in capacitive deionization
journal, December 2016


Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization
journal, December 2016


Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage
journal, May 2015


Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes
journal, February 2012

  • Porada, S.; Weinstein, L.; Dash, R.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 3
  • DOI: 10.1021/am201683j

Capacitive desalination with flow-through electrodes
journal, January 2012

  • Suss, Matthew E.; Baumann, Theodore F.; Bourcier, William L.
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee21498a

New Operational Modes to Increase Energy Efficiency in Capacitive Deionization Systems
journal, May 2016

  • García-Quismondo, Enrique; Santos, Cleis; Soria, Jorge
  • Environmental Science & Technology, Vol. 50, Issue 11
  • DOI: 10.1021/acs.est.5b05379

Two-Dimensional Porous Electrode Model for Capacitive Deionization
journal, October 2015

  • Hemmatifar, Ali; Stadermann, Michael; Santiago, Juan G.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 44
  • DOI: 10.1021/acs.jpcc.5b05847

Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water
journal, January 2017


Nafion-AC-based asymmetric capacitive deionization
journal, January 2017


Desalting by Means of Porous Carbon Electrodes
journal, January 1971

  • Johnson, A. M.; Newman, John
  • Journal of The Electrochemical Society, Vol. 118, Issue 3
  • DOI: 10.1149/1.2408094

Characterization of Resistances of a Capacitive Deionization System
journal, August 2015

  • Qu, Yatian; Baumann, Theodore F.; Santiago, Juan G.
  • Environmental Science & Technology, Vol. 49, Issue 16
  • DOI: 10.1021/acs.est.5b02542

Flow Through Capacitor basics
journal, July 2011


A one-dimensional model for water desalination by flow-through electrode capacitive deionization
journal, August 2017


Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization
journal, January 2013

  • Porada, S.; Borchardt, L.; Oschatz, M.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42209g

Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior
journal, January 2015

  • Gao, Xin; Omosebi, Ayokunle; Landon, James
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03172E

Predictions of Specific Energies and Specific Powers of Double-Layer Capacitors Using a Simplified Model
journal, January 2000

  • Dunn, Darryl; Newman, John
  • Journal of The Electrochemical Society, Vol. 147, Issue 3
  • DOI: 10.1149/1.1393278

Energy breakdown in capacitive deionization
journal, November 2016


Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI)
journal, September 2016

  • Tang, Wangwang; Kovalsky, Peter; Cao, Baichuan
  • Environmental Science & Technology, Vol. 50, Issue 19
  • DOI: 10.1021/acs.est.6b03307

Water desalting by means of electrochemical parametric pumping: I. The equilibrium properties of a batch unit cell
journal, July 1983

  • Oren, Y.; Soffer, A.
  • Journal of Applied Electrochemistry, Vol. 13, Issue 4
  • DOI: 10.1007/BF00617522

Time-dependent ion selectivity in capacitive charging of porous electrodes
journal, October 2012

  • Zhao, R.; van Soestbergen, M.; Rijnaarts, H. H. M.
  • Journal of Colloid and Interface Science, Vol. 384, Issue 1
  • DOI: 10.1016/j.jcis.2012.06.022

New testing procedures of a capacitive deionization reactor
journal, January 2013

  • García-Quismondo, Enrique; Gómez, Roberto; Vaquero, Fernando
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 20
  • DOI: 10.1039/c3cp50514f

Optimizing the Energy Efficiency of Capacitive Deionization Reactors Working under Real-World Conditions
journal, September 2013

  • García-Quismondo, Enrique; Santos, Cleis; Lado, Julio
  • Environmental Science & Technology, Vol. 47, Issue 20
  • DOI: 10.1021/es4021603

Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization
journal, April 2016


Studies of electrolytic conductance in alcohol-water mixtures. III. Sodium chloride in 1-propanol-water mixtures at 15, 25, and 35.degree.
journal, June 1967

  • Goffredi, Mario; Shedlovsky, Theodore
  • The Journal of Physical Chemistry, Vol. 71, Issue 7
  • DOI: 10.1021/j100866a032

Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes
journal, September 2014

  • Lado, Julio J.; Pérez-Roa, Rodolfo E.; Wouters, Jesse J.
  • Separation and Purification Technology, Vol. 133
  • DOI: 10.1016/j.seppur.2014.07.004

The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging
journal, January 2017


Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques
journal, January 2014

  • Lee, Jaehan; Kim, Seoni; Kim, Choonsoo
  • Energy Environ. Sci., Vol. 7, Issue 11
  • DOI: 10.1039/C4EE02378A

Resistance identification and rational process design in Capacitive Deionization
journal, January 2016


The Origins of Low Efficiency in Electrochemical De-Ionization Systems
journal, January 2016

  • Shanbhag, S.; Whitacre, J. F.; Mauter, M. S.
  • Journal of The Electrochemical Society, Vol. 163, Issue 14
  • DOI: 10.1149/2.0181614jes

Energy Consumption and Recovery in Capacitive Deionization Using Nanoporous Activated Carbon Electrodes
journal, January 2015

  • Han, Linchen; Karthikeyan, K. G.; Gregory, Kelvin B.
  • Journal of The Electrochemical Society, Vol. 162, Issue 12
  • DOI: 10.1149/2.0431512jes

Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes
journal, December 2010


High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water
journal, January 2016

  • Srimuk, Pattarachai; Ries, Lucie; Zeiger, Marco
  • RSC Advances, Vol. 6, Issue 108
  • DOI: 10.1039/C6RA22800C

High surface area carbon aerogel monoliths with hierarchical porosity
journal, July 2008

  • Baumann, Theodore F.; Worsley, Marcus A.; Han, T. Yong-Jin
  • Journal of Non-Crystalline Solids, Vol. 354, Issue 29, p. 3513-3515
  • DOI: 10.1016/j.jnoncrysol.2008.03.006

Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes
journal, October 2017


Carbon electrodes for capacitive deionization
journal, January 2017

  • Huang, Zheng-Hong; Yang, Zhiyu; Kang, Feiyu
  • Journal of Materials Chemistry A, Vol. 5, Issue 2
  • DOI: 10.1039/C6TA06733F

Nonlinear dynamics of capacitive charging and desalination by porous electrodes
journal, March 2010


CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization
journal, January 2015


Dynamic Adsorption/Desorption Process Model for Capacitive Deionization
journal, March 2009

  • Biesheuvel, P. M.; van Limpt, B.; van der Wal, A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 14
  • DOI: 10.1021/jp809644s

Low Electrolytic Conductivity Standards
journal, September 1995

  • Wu, Y. C.; Berezansky, P. A.
  • Journal of Research of the National Institute of Standards and Technology, Vol. 100, Issue 5
  • DOI: 10.6028/jres.100.039

Review on the science and technology of water desalination by capacitive deionization
journal, October 2013


Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization
journal, November 2009

  • Zhao, R.; Biesheuvel, P. M.; Miedema, H.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1021/jz900154h

Works referencing / citing this record:

Physico‐chemical processes
journal, September 2019

  • Ouyang, Weihang; Chen, Tianhao; Shi, Yihao
  • Water Environment Research, Vol. 91, Issue 10
  • DOI: 10.1002/wer.1231

Constant chemical potential cycles for capacitive deionization
journal, January 2019

  • Moreno, Daniel; Hatzell, Marta C.
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 44
  • DOI: 10.1039/c9cp05032a

Physico-Chemical Processes
journal, October 2016


Capacitive deionization using symmetric carbon electrode pairs
journal, January 2019

  • Gao, X.; Omosebi, A.; Ma, Z.
  • Environmental Science: Water Research & Technology, Vol. 5, Issue 4
  • DOI: 10.1039/c8ew00957k

Physico-Chemical Processes
journal, January 2010