DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution

Abstract

Abstract Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi 0.5− y Cu y Mn 0.5−  z Ti z O 2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to Δ V / V ≈23% in the parent NaNi 0.5 Mn 0.5 O 2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g −1 are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L −1 ), than today's Na 3 V 2 (PO 4 ) 2more » F 3 /HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5];  [6]; ORCiD logo [7]; ORCiD logo [3]
  1. Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France, Sorbonne Université 4 place Jussieu 75005 Paris France, Renault Technocentre 1 Avenue du Golf 78288 Guyancourt France
  2. Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France, Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 80039 Amiens France
  3. Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France, Sorbonne Université 4 place Jussieu 75005 Paris France, Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 80039 Amiens France
  4. Center for Energy Science and Technology Skolkovo Institute of Science and Technology Nobel str. 3 143026 Moscow Russia
  5. Sorbonne Université 4 place Jussieu 75005 Paris France
  6. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 80039 Amiens France, Laboratoire de Réactivité et de Chimie des Solides UMR 7314 Univ. de Picardie Jules Verne 80039 Amiens Cedex 1 France
  7. Renault Technocentre 1 Avenue du Golf 78288 Guyancourt France
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1548796
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Name: Advanced Energy Materials Journal Volume: 9 Journal Issue: 36; Journal ID: ISSN 1614-6832
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Wang, Qing, Mariyappan, Sathiya, Vergnet, Jean, Abakumov, Artem M., Rousse, Gwenaëlle, Rabuel, François, Chakir, Mohamed, and Tarascon, Jean‐Marie. Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution. Germany: N. p., 2019. Web. doi:10.1002/aenm.201901785.
Wang, Qing, Mariyappan, Sathiya, Vergnet, Jean, Abakumov, Artem M., Rousse, Gwenaëlle, Rabuel, François, Chakir, Mohamed, & Tarascon, Jean‐Marie. Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution. Germany. https://doi.org/10.1002/aenm.201901785
Wang, Qing, Mariyappan, Sathiya, Vergnet, Jean, Abakumov, Artem M., Rousse, Gwenaëlle, Rabuel, François, Chakir, Mohamed, and Tarascon, Jean‐Marie. Fri . "Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution". Germany. https://doi.org/10.1002/aenm.201901785.
@article{osti_1548796,
title = {Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution},
author = {Wang, Qing and Mariyappan, Sathiya and Vergnet, Jean and Abakumov, Artem M. and Rousse, Gwenaëlle and Rabuel, François and Chakir, Mohamed and Tarascon, Jean‐Marie},
abstractNote = {Abstract Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi 0.5− y Cu y Mn 0.5−  z Ti z O 2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to Δ V / V ≈23% in the parent NaNi 0.5 Mn 0.5 O 2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g −1 are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L −1 ), than today's Na 3 V 2 (PO 4 ) 2 F 3 /HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability.},
doi = {10.1002/aenm.201901785},
journal = {Advanced Energy Materials},
number = 36,
volume = 9,
place = {Germany},
year = {Fri Aug 09 00:00:00 EDT 2019},
month = {Fri Aug 09 00:00:00 EDT 2019}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/aenm.201901785

Citation Metrics:
Cited by: 73 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?
journal, January 2019

  • Li, Hongyang; Cormier, Marc; Zhang, Ning
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1381902jes

Stacking-Sequence Changes and Na Ordering in Layered Intercalation Materials
journal, November 2016


Kinetics of Lithium Ion Transfer at the Interface between Graphite and Liquid Electrolytes: Effects of Solvent and Surface Film
journal, November 2009

  • Yamada, Yuki; Iriyama, Yasutoshi; Abe, Takeshi
  • Langmuir, Vol. 25, Issue 21
  • DOI: 10.1021/la901829v

Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices?
journal, April 2017


Electrochemistry and Solid‐State Chemistry of NaMeO 2 (Me = 3d Transition Metals)
journal, June 2018

  • Kubota, Kei; Kumakura, Shinichi; Yoda, Yusuke
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703415

Prototype Sodium-Ion Batteries Using an Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode
journal, October 2015


Magnetic susceptibility and heat capacity investigations of the unconventional spin-chain compound Sr 3 CuPtO 6
journal, January 2004


Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents
journal, January 2013

  • Okoshi, Masaki; Yamada, Yuki; Yamada, Atsuo
  • Journal of The Electrochemical Society, Vol. 160, Issue 11
  • DOI: 10.1149/2.074311jes

Structural study of NiO2 and CoO2 as end members of the lithiated compounds by in situ high resolution X-ray powder diffraction
journal, September 1999


Will Sodium Layered Oxides Ever Be Competitive for Sodium Ion Battery Applications?
journal, January 2018

  • Mariyappan, Sathiya; Wang, Qing; Tarascon, Jean Marie
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0201816jes

Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance
journal, November 2017


Correlation between Charge−Discharge Behavior of Graphite and Solvation Structure of the Lithium Ion in Propylene Carbonate-Containing Electrolytes
journal, May 2009

  • Yamada, Yuki; Koyama, Yasuhiro; Abe, Takeshi
  • The Journal of Physical Chemistry C, Vol. 113, Issue 20
  • DOI: 10.1021/jp9022458

P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries
journal, April 2015

  • Wang, Yuesheng; Xiao, Ruijuan; Hu, Yong-Sheng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7954

P2-type Na 2/3 Ni 1/3 Mn 2/3−x Ti x O 2 as a new positive electrode for higher energy Na-ion batteries
journal, January 2014

  • Yoshida, Hiroaki; Yabuuchi, Naoaki; Kubota, Kei
  • Chem. Commun., Vol. 50, Issue 28
  • DOI: 10.1039/C3CC49856E

High Energy Density Sodium-Ion Battery with Industrially Feasible and Air-Stable O3-Type Layered Oxide Cathode
journal, October 2017

  • Deng, Jianqiu; Luo, Wen-Bin; Lu, Xiao
  • Advanced Energy Materials, Vol. 8, Issue 5
  • DOI: 10.1002/aenm.201701610

Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials
journal, January 2011

  • Ong, Shyue Ping; Chevrier, Vincent L.; Hautier, Geoffroy
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01782a

Investigation of Alkali‐Ion (Li, Na, and K) Intercalation in K x VPO 4 F ( x ∼ 0) Cathode
journal, June 2019

  • Kim, Haegyeom; Ishado, Yuji; Tian, Yaosen
  • Advanced Functional Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adfm.201902392

Unraveling the role of Ti in the stability of positive layered oxide electrodes for rechargeable Na-ion batteries
journal, January 2019

  • Zarrabeitia, Maider; Gonzalo, Elena; Pasqualini, Marta
  • Journal of Materials Chemistry A, Vol. 7, Issue 23
  • DOI: 10.1039/C9TA02710F

Direct visualization of the Jahn–Teller effect coupled to Na ordering in Na5/8MnO2
journal, May 2014

  • Li, Xin; Ma, Xiaohua; Su, Dong
  • Nature Materials, Vol. 13, Issue 6
  • DOI: 10.1038/nmat3964

Structure and twinning of Sr3CuPtO6
journal, February 1992

  • Hodeau, J. L.; Tu, H. Y.; Bordet, P.
  • Acta Crystallographica Section B Structural Science, Vol. 48, Issue 1
  • DOI: 10.1107/S0108768191010248

O3–Na x Mn 1/3 Fe 2/3 O 2 as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na + (de)intercalation
journal, January 2015

  • Mortemard de Boisse, B.; Cheng, J. -H.; Carlier, D.
  • Journal of Materials Chemistry A, Vol. 3, Issue 20
  • DOI: 10.1039/C4TA06688J

Water-Processable P2-Na 0.67 Ni 0.22 Cu 0.11 Mn 0.56 Ti 0.11 O 2 Cathode Material for Sodium Ion Batteries
journal, January 2019

  • Mu, Linqin; Hou, Qingping; Yang, Zhenzhong
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.0881902jes

Recent Progress in Electrode Materials for Sodium-Ion Batteries
journal, July 2016

  • Kim, Hyungsub; Kim, Haegyeom; Ding, Zhang
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600943

Tetrastrontium dimanganese copper nonaoxide, Sr 4 Mn 2 CuO 9
journal, September 2002

  • El Abed, Ahmed; Gaudin, Etienne; Darriet, Jacques
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 58, Issue 10
  • DOI: 10.1107/S0108270102015639

Ti-Substituted NaNi 0.5 Mn 0.5- x Ti x O 2 Cathodes with Reversible O3−P3 Phase Transition for High-Performance Sodium-Ion Batteries
journal, March 2017


Optimization of Na-Ion Battery Systems Based on Polyanionic or Layered Positive Electrodes and Carbon Anodes
journal, January 2016

  • Dugas, R.; Zhang, B.; Rozier, P.
  • Journal of The Electrochemical Society, Vol. 163, Issue 6
  • DOI: 10.1149/2.0051605jes

Novel titanium-based O3-type NaTi 0.5 Ni 0.5 O 2 as a cathode material for sodium ion batteries
journal, January 2014

  • Yu, Haijun; Guo, Shaohua; Zhu, Yanbei
  • Chem. Commun., Vol. 50, Issue 4
  • DOI: 10.1039/C3CC47351A

An Abnormal 3.7 Volt O3-Type Sodium-Ion Battery Cathode
journal, May 2018

  • Wang, Peng-Fei; Xin, Hanshen; Zuo, Tong-Tong
  • Angewandte Chemie International Edition, Vol. 57, Issue 27
  • DOI: 10.1002/anie.201804130

Exploring a high capacity O3-type cathode for sodium-ion batteries and its structural evolution during an electrochemical process
journal, January 2018

  • Zhang, Xueping; Jiang, Kezhu; Guo, Shaohua
  • Chemical Communications, Vol. 54, Issue 86
  • DOI: 10.1039/C8CC05888A

Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material
journal, February 2019


Designing Air-Stable O3-Type Cathode Materials by Combined Structure Modulation for Na-Ion Batteries
journal, June 2017

  • Yao, Hu-Rong; Wang, Peng-Fei; Gong, Yue
  • Journal of the American Chemical Society, Vol. 139, Issue 25
  • DOI: 10.1021/jacs.7b05176

A Chemical Approach to Raise Cell Voltage and Suppress Phase Transition in O3 Sodium Layered Oxide Electrodes
journal, January 2018

  • Sathiya, Mariyappan; Jacquet, Quentin; Doublet, Marie-Liesse
  • Advanced Energy Materials, Vol. 8, Issue 11
  • DOI: 10.1002/aenm.201702599

Air-Stable Copper-Based P2-Na 7/9 Cu 2/9 Fe 1/9 Mn 2/3 O 2 as a New Positive Electrode Material for Sodium-Ion Batteries
journal, May 2015


Structural classification and properties of the layered oxides
journal, January 1980


Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Stability of Prismatic and Octahedral Coordination in Layered Oxides and Sulfides Intercalated with Alkali and Alkaline-Earth Metals
journal, October 2016