DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte

Abstract

Aluminum-sulfur (Al-S) chemistry is attractive for the development of future-generation electrochemical energy storage technologies. Yet, to date, only limited reversible Al-S chemistry has been demonstrated. This report demonstrates a highly reversible room-temperature Al-S battery with a lithium-ion (Li+-ion)-mediated ionic liquid electrolyte. Mechanistic studies with electrochemical and spectroscopic methodologies revealed that the enhancement in reversibility by Li+-ion mediation is attributed to the chemical reactivation of aluminum polysulfides and/or sulfide by Li+ during electrochemical cycling. The results obtained with X-ray photoelectron spectroscopy and density functional theory calculations suggest the presence of a Li3AlS3-like product with a mixture of Li2S- and Al2S3-like phases in the discharged sulfur cathode. With Li+-ion mediation, the cycle life of room-temperature Al-S batteries is greatly improved. The cell delivers an initial capacity of ~1,000 mA hr g-1 and maintains a capacity of up to 600 mA hr g-1 after 50 cycles.

Authors:
; ; ;
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Robert A. Welch Foundation
Contributing Org.:
Texas Advanced Computing Center (TACC)
OSTI Identifier:
1548739
Alternate Identifier(s):
OSTI ID: 1596650
Grant/Contract Number:  
SC0005397
Resource Type:
Published Article
Journal Name:
Chem
Additional Journal Information:
Journal Name: Chem Journal Volume: 4 Journal Issue: 3; Journal ID: ISSN 2451-9294
Publisher:
Cell Press, Elsevier
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; aluminum-sulfur battery; ionic liquid electrolyte; Li+-ion mediation; electrochemical mechanism; density functional theory calculation

Citation Formats

Yu, Xingwen, Boyer, Mathew J., Hwang, Gyeong S., and Manthiram, Arumugam. Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte. United States: N. p., 2018. Web. doi:10.1016/j.chempr.2017.12.029.
Yu, Xingwen, Boyer, Mathew J., Hwang, Gyeong S., & Manthiram, Arumugam. Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte. United States. https://doi.org/10.1016/j.chempr.2017.12.029
Yu, Xingwen, Boyer, Mathew J., Hwang, Gyeong S., and Manthiram, Arumugam. Thu . "Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte". United States. https://doi.org/10.1016/j.chempr.2017.12.029.
@article{osti_1548739,
title = {Room-Temperature Aluminum-Sulfur Batteries with a Lithium-Ion-Mediated Ionic Liquid Electrolyte},
author = {Yu, Xingwen and Boyer, Mathew J. and Hwang, Gyeong S. and Manthiram, Arumugam},
abstractNote = {Aluminum-sulfur (Al-S) chemistry is attractive for the development of future-generation electrochemical energy storage technologies. Yet, to date, only limited reversible Al-S chemistry has been demonstrated. This report demonstrates a highly reversible room-temperature Al-S battery with a lithium-ion (Li+-ion)-mediated ionic liquid electrolyte. Mechanistic studies with electrochemical and spectroscopic methodologies revealed that the enhancement in reversibility by Li+-ion mediation is attributed to the chemical reactivation of aluminum polysulfides and/or sulfide by Li+ during electrochemical cycling. The results obtained with X-ray photoelectron spectroscopy and density functional theory calculations suggest the presence of a Li3AlS3-like product with a mixture of Li2S- and Al2S3-like phases in the discharged sulfur cathode. With Li+-ion mediation, the cycle life of room-temperature Al-S batteries is greatly improved. The cell delivers an initial capacity of ~1,000 mA hr g-1 and maintains a capacity of up to 600 mA hr g-1 after 50 cycles.},
doi = {10.1016/j.chempr.2017.12.029},
journal = {Chem},
number = 3,
volume = 4,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2018},
month = {Thu Mar 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.chempr.2017.12.029

Citation Metrics:
Cited by: 101 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrochemistry of Sulfur and Polysulfides in Ionic Liquids
journal, December 2011

  • Manan, Ninie S. A.; Aldous, Leigh; Alias, Yatimah
  • The Journal of Physical Chemistry B, Vol. 115, Issue 47
  • DOI: 10.1021/jp208159v

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery
journal, October 2016

  • Wang, Huali; Gu, Sichen; Bai, Ying
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 41
  • DOI: 10.1021/acsami.6b10579

A Novel Aluminum-Ion Battery: Al/AlCl 3 -[EMIm]Cl/Ni 3 S 2 @Graphene
journal, April 2016


Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts
journal, January 1997


Na 2 S-Carbon Nanotube Fabric Electrodes for Room-Temperature Sodium-Sulfur Batteries
journal, January 2015

  • Yu, Xingwen; Manthiram, Arumugam
  • Chemistry - A European Journal, Vol. 21, Issue 11
  • DOI: 10.1002/chem.201405344

Projector augmented-wave method
journal, December 1994


A novel non-aqueous aluminum sulfur battery
journal, June 2015


An ultrafast rechargeable aluminium-ion battery
journal, April 2015

  • Lin, Meng-Chang; Gong, Ming; Lu, Bingan
  • Nature, Vol. 520, Issue 7547
  • DOI: 10.1038/nature14340

Reversible Electrochemical Intercalation of Aluminum in Mo 6 S 8
journal, July 2015


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Amorphous Vanadium Oxide/Carbon Composite Positive Electrode for Rechargeable Aluminum Battery
journal, October 2015

  • Chiku, Masanobu; Takeda, Hiroki; Matsumura, Shota
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 44
  • DOI: 10.1021/acsami.5b06420

The Roles of V 2 O 5 and Stainless Steel in Rechargeable Al–Ion Batteries
journal, January 2013

  • Reed, Luke D.; Menke, Erik
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.114306jes

Challenges and Prospects of Lithium–Sulfur Batteries
journal, June 2012

  • Manthiram, Arumugam; Fu, Yongzhu; Su, Yu-Sheng
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300179v

Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries
journal, January 2012

  • Liu, S.; Hu, J. J.; Yan, N. F.
  • Energy & Environmental Science, Vol. 5, Issue 12
  • DOI: 10.1039/c2ee22987k

Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries
journal, January 2016

  • Yu, Zhijing; Kang, Zepeng; Hu, Zongqian
  • Chemical Communications, Vol. 52, Issue 68
  • DOI: 10.1039/C6CC05974K

Fluorinated Graphites as Energetic Cathodes for Nonaqueous Al Batteries
journal, January 2002

  • Levitin, Galit; Yarnitzky, Chaim; Licht, Stuart
  • Electrochemical and Solid-State Letters, Vol. 5, Issue 7
  • DOI: 10.1149/1.1481797

Aluminium-ion batteries: developments and challenges
journal, January 2017

  • Das, Shyamal K.; Mahapatra, Sadhan; Lahan, Homen
  • Journal of Materials Chemistry A, Vol. 5, Issue 14
  • DOI: 10.1039/C7TA00228A

Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries
journal, May 2014

  • Yu, Xingwen; Manthiram, Arumugam
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 11
  • DOI: 10.1021/jz500848x

Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode
journal, January 2015

  • Yu, Xingwen; Joseph, Jorphin; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 3, Issue 30
  • DOI: 10.1039/C5TA04289E

A High Capacity Calcium Primary Cell Based on the Ca-S System
journal, April 2013

  • See, Kimberly A.; Gerbec, Jeffrey A.; Jun, Young-Si
  • Advanced Energy Materials, Vol. 3, Issue 8
  • DOI: 10.1002/aenm.201300160

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Chemistry of Sputter-Deposited Lithium Sulfide Films
journal, July 2017

  • Klein, Michael J.; Veith, Gabriel M.; Manthiram, Arumugam
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b03379

Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


A strategic approach to recharging lithium-sulphur batteries for long cycle life
journal, December 2013

  • Su, Yu-Sheng; Fu, Yongzhu; Cochell, Thomas
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3985

Performance Enhancement and Mechanistic Studies of Magnesium–Sulfur Cells with an Advanced Cathode Structure
journal, July 2016


Time-Resolved In Situ Spectroelectrochemical Study on Reduction of Sulfur in N,N[sup ʹ]-Dimethylformamide
journal, January 2004

  • Han, Dong-Hun; Kim, Bum-Soo; Choi, Shin-Jung
  • Journal of The Electrochemical Society, Vol. 151, Issue 9
  • DOI: 10.1149/1.1773733

The rechargeable aluminum-ion battery
journal, January 2011

  • Jayaprakash, N.; Das, S. K.; Archer, L. A.
  • Chemical Communications, Vol. 47, Issue 47
  • DOI: 10.1039/c1cc15779e

A new aluminium-ion battery with high voltage, high safety and low cost
journal, January 2015

  • Sun, Haobo; Wang, Wei; Yu, Zhijing
  • Chemical Communications, Vol. 51, Issue 59
  • DOI: 10.1039/C5CC00542F

A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation
journal, November 2013

  • Wang, Wei; Jiang, Bo; Xiong, Weiyi
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03383

Chloroaluminate-Doped Conducting Polymers as Positive Electrodes in Rechargeable Aluminum Batteries
journal, March 2014

  • Hudak, Nicholas S.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 10
  • DOI: 10.1021/jp500593d

Experimental and Theoretical Analysis of Products and Reaction Intermediates of Lithium–Sulfur Batteries
journal, May 2014

  • Cañas, Natalia A.; Fronczek, David N.; Wagner, Norbert
  • The Journal of Physical Chemistry C, Vol. 118, Issue 23
  • DOI: 10.1021/jp5013208

Highly Reversible Lithium/Dissolved Polysulfide Batteries with Carbon Nanotube Electrodes
journal, May 2013

  • Fu, Yongzhu; Su, Yu-Sheng; Manthiram, Arumugam
  • Angewandte Chemie International Edition, Vol. 52, Issue 27
  • DOI: 10.1002/anie.201301250

In Situ -Formed Li 2 S in Lithiated Graphite Electrodes for Lithium–Sulfur Batteries
journal, November 2013

  • Fu, Yongzhu; Zu, Chenxi; Manthiram, Arumugam
  • Journal of the American Chemical Society, Vol. 135, Issue 48
  • DOI: 10.1021/ja409705u

A Rechargeable Al/S Battery with an Ionic-Liquid Electrolyte
journal, July 2016

  • Gao, Tao; Li, Xiaogang; Wang, Xiwen
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201603531

Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes
journal, October 2014

  • Zhao-Karger, Zhirong; Zhao, Xiangyu; Wang, Di
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201401155

Potassium–Sulfur Batteries: A New Member of Room-Temperature Rechargeable Metal–Sulfur Batteries
journal, August 2014

  • Zhao, Qing; Hu, Yuxiang; Zhang, Kai
  • Inorganic Chemistry, Vol. 53, Issue 17
  • DOI: 10.1021/ic500919e

Non-conventional electrolytes for electrochemical applications
journal, May 2000


A stable room-temperature sodium–sulfur battery
journal, June 2016

  • Wei, Shuya; Xu, Shaomao; Agrawral, Akanksha
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11722

Recent Advances in Lithium Sulfide Cathode Materials and Their Use in Lithium Sulfur Batteries
journal, April 2015

  • Son, Yoonkook; Lee, Jung-Soo; Son, Yeonguk
  • Advanced Energy Materials, Vol. 5, Issue 16
  • DOI: 10.1002/aenm.201500110

Structure and compatibility of a magnesium electrolyte with a sulphur cathode
journal, August 2011

  • Kim, Hee Soo; Arthur, Timothy S.; Allred, Gary D.
  • Nature Communications, Vol. 2, Article No. 427
  • DOI: 10.1038/ncomms1435

Binder-Free V 2 O 5 Cathode for Greener Rechargeable Aluminum Battery
journal, December 2014

  • Wang, Huali; Bai, Ying; Chen, Shi
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 1
  • DOI: 10.1021/am508001h

Cheap and Environmentally Benign Electrochemical Energy Storage and Conversion Devices Based on AlI 3 Electrolytes
journal, July 2006

  • Xue, Bofei; Fu, Zhengwen; Li, Hong
  • Journal of the American Chemical Society, Vol. 128, Issue 27
  • DOI: 10.1021/ja057791v

Ambient-Temperature Sodium-Sulfur Batteries with a Sodiated Nafion Membrane and a Carbon Nanofiber-Activated Carbon Composite Electrode
journal, April 2015


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Fluorinated Natural Graphite Cathode for Rechargeable Ionic Liquid Based Aluminum–Ion Battery
journal, January 2013

  • Rani, J. Vatsala; Kanakaiah, V.; Dadmal, Tulshiram
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.072310jes

Electrochemical Energy Storage with a Reversible Nonaqueous Room-Temperature Aluminum-Sulfur Chemistry
journal, May 2017


Enhancing the Reversibility of Mg/S Battery Chemistry through Li + Mediation
journal, September 2015

  • Gao, Tao; Noked, Malachi; Pearse, Alex J.
  • Journal of the American Chemical Society, Vol. 137, Issue 38
  • DOI: 10.1021/jacs.5b07820

Atomic Insight into the Lithium Storage and Diffusion Mechanism of SiO 2 /Al 2 O 3 Electrodes of Lithium Ion Batteries: ReaxFF Reactive Force Field Modeling
journal, March 2016

  • Ostadhossein, Alireza; Kim, Sung-Yup; Cubuk, Ekin D.
  • The Journal of Physical Chemistry A, Vol. 120, Issue 13
  • DOI: 10.1021/acs.jpca.5b11908

Synthesis, Crystal Structure, and Electrochemical Properties of a Simple Magnesium Electrolyte for Magnesium/Sulfur Batteries
journal, April 2016

  • Li, Wanfei; Cheng, Shuang; Wang, Jian
  • Angewandte Chemie International Edition, Vol. 55, Issue 22
  • DOI: 10.1002/anie.201600256

Electrochemical reduction of sulfur in aprotic solvents
journal, August 1973

  • Martin, Robert P.; Doub, William H.; Roberts, Julian L.
  • Inorganic Chemistry, Vol. 12, Issue 8
  • DOI: 10.1021/ic50126a047

ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials
journal, January 2015

  • Islam, Md Mahbubul; Ostadhossein, Alireza; Borodin, Oleg
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 5
  • DOI: 10.1039/C4CP04532G

A class of polysulfide catholytes for lithium–sulfur batteries: energy density, cyclability, and voltage enhancement
journal, January 2015

  • Yu, Xingwen; Manthiram, Arumugam
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 3
  • DOI: 10.1039/C4CP04895D

Ambient Temperature Sodium-Sulfur Batteries
journal, January 2015


Electrodeposition of metals from non-aqueous solutions
journal, September 2009


A high performance hybrid battery based on aluminum anode and LiFePO 4 cathode
journal, January 2016

  • Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan
  • Chemical Communications, Vol. 52, Issue 8
  • DOI: 10.1039/C5CC09019A

A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


A Novel Aluminum-Graphite Dual-Ion Battery
journal, March 2016

  • Zhang, Xiaolong; Tang, Yongbing; Zhang, Fan
  • Advanced Energy Materials, Vol. 6, Issue 11
  • DOI: 10.1002/aenm.201502588