skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 31, 2020

Title: A high bandwidth microelectromechanical system-based nanopositioner for scanning tunneling microscopy

Abstract

Limited Z-axis bandwidth of piezotube scanners used in conventional Scanning Tunneling Microscopes (STMs) has been a major limiting factor in achieving high scan speeds in STM applications. Slow Z-axis dynamics of typical piezotube scanners combined with the weight of the STM tip/tip holder assembly, that the scanner has to carry, substantially limit the achievable Z-axis bandwidth in both imaging and lithography modes. To tackle this issue, we introduce a high bandwidth microelectromechanical-system-based nanopositioner to be integrated into an existing STM scanner. The device is designed to replace the STM tip and fine Z-positioning mechanisms in the conventional STM setup, while providing an order of magnitude higher bandwidth in Z axis. The device is microfabricated using double silicon-on-isolator technology, and standard cleanroom processes. Experiments show that tunneling current between the device tip and a highly ordered pyrolytic graphite sample can be successfully established and maintained in air using the proposed device in a feedback loop. Results suggest that the proposed device uniquely combines a very high resolution and a large stroke with a substantially larger Z-axis bandwidth compared to that of conventional STM piezotube scanners, enabling higher scanning speeds in STM operations.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Texas-Dallas, Richardson, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas at Dallas, Richardson, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (EE-5A)
OSTI Identifier:
1548310
Alternate Identifier(s):
OSTI ID: 1545907
Grant/Contract Number:  
EE0008322
Resource Type:
Accepted Manuscript
Journal Name:
Review of Scientific Instruments
Additional Journal Information:
Journal Volume: 90; Journal Issue: 7; Journal ID: ISSN 0034-6748
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Scanning Tunneling Microscopy; MEMS; Nanopositioner; In-plane tip

Citation Formats

Alipour, Afshin, Coskun, M. Bulut, and Moheimani, S. O. Reza. A high bandwidth microelectromechanical system-based nanopositioner for scanning tunneling microscopy. United States: N. p., 2019. Web. doi:10.1063/1.5109900.
Alipour, Afshin, Coskun, M. Bulut, & Moheimani, S. O. Reza. A high bandwidth microelectromechanical system-based nanopositioner for scanning tunneling microscopy. United States. doi:10.1063/1.5109900.
Alipour, Afshin, Coskun, M. Bulut, and Moheimani, S. O. Reza. Wed . "A high bandwidth microelectromechanical system-based nanopositioner for scanning tunneling microscopy". United States. doi:10.1063/1.5109900.
@article{osti_1548310,
title = {A high bandwidth microelectromechanical system-based nanopositioner for scanning tunneling microscopy},
author = {Alipour, Afshin and Coskun, M. Bulut and Moheimani, S. O. Reza},
abstractNote = {Limited Z-axis bandwidth of piezotube scanners used in conventional Scanning Tunneling Microscopes (STMs) has been a major limiting factor in achieving high scan speeds in STM applications. Slow Z-axis dynamics of typical piezotube scanners combined with the weight of the STM tip/tip holder assembly, that the scanner has to carry, substantially limit the achievable Z-axis bandwidth in both imaging and lithography modes. To tackle this issue, we introduce a high bandwidth microelectromechanical-system-based nanopositioner to be integrated into an existing STM scanner. The device is designed to replace the STM tip and fine Z-positioning mechanisms in the conventional STM setup, while providing an order of magnitude higher bandwidth in Z axis. The device is microfabricated using double silicon-on-isolator technology, and standard cleanroom processes. Experiments show that tunneling current between the device tip and a highly ordered pyrolytic graphite sample can be successfully established and maintained in air using the proposed device in a feedback loop. Results suggest that the proposed device uniquely combines a very high resolution and a large stroke with a substantially larger Z-axis bandwidth compared to that of conventional STM piezotube scanners, enabling higher scanning speeds in STM operations.},
doi = {10.1063/1.5109900},
journal = {Review of Scientific Instruments},
number = 7,
volume = 90,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 31, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Scanning tunneling microscopy
journal, March 1983


Atomic precision lithography on Si
journal, January 2009

  • Randall, J. N.; Lyding, J. W.; Schmucker, S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 27, Issue 6
  • DOI: 10.1116/1.3237096

Apparent barrier height in scanning tunneling microscopy
journal, June 1988


Tip-Sample Interactions in the Scanning Tunneling Microscope for Atomic-Scale Structure Fabrication
journal, March 1993

  • Aono, Masakazu; Kobayashi, Ataru; Grey, Fran\ccois
  • Japanese Journal of Applied Physics, Vol. 32, Issue Part 1, No. 3B
  • DOI: 10.1143/jjap.32.1470

Rigid design of fast scanning probe microscopes using finite element analysis
journal, August 2004


A high-speed atomic force microscope for studying biological macromolecules
journal, October 2001

  • Ando, T.; Kodera, N.; Takai, E.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 22
  • DOI: 10.1073/pnas.211400898

High-speed Atomic Force Microscopy for Capturing Dynamic Behavior of Protein Molecules at Work
journal, January 2005

  • Ando, Toshio; Kodera, Noriyuki; Uchihashi, Takayuki
  • e-Journal of Surface Science and Nanotechnology, Vol. 3
  • DOI: 10.1380/ejssnt.2005.384

A serial-kinematic nanopositioner for high-speed atomic force microscopy
journal, October 2014

  • Wadikhaye, Sachin P.; Yong, Yuen Kuan; Reza Moheimani, S. O.
  • Review of Scientific Instruments, Vol. 85, Issue 10
  • DOI: 10.1063/1.4897483

Design and Modeling of a High-Speed AFM-Scanner
journal, September 2007

  • Schitter, Georg; Astrom, Karl J.; DeMartini, Barry E.
  • IEEE Transactions on Control Systems Technology, Vol. 15, Issue 5
  • DOI: 10.1109/tcst.2007.902953

Design of an Inertially Counterbalanced $Z$ -Nanopositioner for High-Speed Atomic Force Microscopy
journal, March 2013


High-speed AFM and nano-visualization of biomolecular processes
journal, December 2007

  • Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki
  • Pflügers Archiv - European Journal of Physiology, Vol. 456, Issue 1
  • DOI: 10.1007/s00424-007-0406-0

Scanning probe microscopes go video rate and beyond
journal, May 2005

  • Rost, M. J.; Crama, L.; Schakel, P.
  • Review of Scientific Instruments, Vol. 76, Issue 5
  • DOI: 10.1063/1.1915288

A High-Bandwidth MEMS Nanopositioner for On-Chip AFM: Design, Characterization, and Control
journal, March 2015

  • Maroufi, Mohammad; Bazaei, Ali; Reza Moheimani, S. O.
  • IEEE Transactions on Control Systems Technology, Vol. 23, Issue 2
  • DOI: 10.1109/tcst.2014.2345098

High-stroke silicon-on-insulator MEMS nanopositioner: Control design for non-raster scan atomic force microscopy
journal, February 2015

  • Maroufi, Mohammad; Fowler, Anthony G.; Bazaei, Ali
  • Review of Scientific Instruments, Vol. 86, Issue 2
  • DOI: 10.1063/1.4907908

A 2DOF SOI-MEMS Nanopositioner With Tilted Flexure Bulk Piezoresistive Displacement Sensors
journal, April 2016


Zero displacement microelectromechanical force sensor using feedback control
journal, April 2014

  • Bulut Coskun, M.; Moore, Steven; Moheimani, S. O. Reza
  • Applied Physics Letters, Vol. 104, Issue 15
  • DOI: 10.1063/1.4871380

Integrated micro‐scanning tunneling microscope
journal, October 1995

  • Xu, Y.; MacDonald, N. C.; Miller, S. A.
  • Applied Physics Letters, Vol. 67, Issue 16
  • DOI: 10.1063/1.115134

Microfabricated scanning tunneling microscope
journal, November 1989

  • Akamine, S.; Albrecht, T. R.; Zdeblick, M. J.
  • IEEE Electron Device Letters, Vol. 10, Issue 11
  • DOI: 10.1109/55.43113

Bulk micromachined tunneling tips integrated with positioning actuators
journal, February 2005

  • Mita, M.; Kawara, H.; Toshiyoshi, H.
  • Journal of Microelectromechanical Systems, Vol. 14, Issue 1
  • DOI: 10.1109/jmems.2004.838997

MEMS-based high speed scanning probe microscopy
journal, April 2010

  • Disseldorp, E. C. M.; Tabak, F. C.; Katan, A. J.
  • Review of Scientific Instruments, Vol. 81, Issue 4
  • DOI: 10.1063/1.3361215

Scanning probe microscopy at video-rate
journal, January 2008


Variable‐temperature scanning tunneling microscope
journal, September 1988

  • Lyding, J. W.; Skala, S.; Hubacek, J. S.
  • Review of Scientific Instruments, Vol. 59, Issue 9
  • DOI: 10.1063/1.1140047

Design and fabrication of in-plane AFM probes with sharp silicon nitride tips based on refilling of anisotropically etched silicon moulds
journal, September 2014

  • Geerlings, J.; Sarajlic, E.; Berenschot, J. W.
  • Journal of Micromechanics and Microengineering, Vol. 24, Issue 10
  • DOI: 10.1088/0960-1317/24/10/105013

Nanotubes as nanoprobes in scanning probe microscopy
journal, November 1996

  • Dai, Hongjie; Hafner, Jason H.; Rinzler, Andrew G.
  • Nature, Vol. 384, Issue 6605
  • DOI: 10.1038/384147a0

Multimodal atomic force microscopy with optimized higher eigenmode sensitivity using on-chip piezoelectric actuation and sensing
journal, January 2019

  • Ruppert, Michael G.; Moore, Steven I.; Zawierta, Michal
  • Nanotechnology, Vol. 30, Issue 8
  • DOI: 10.1088/1361-6528/aae40b

On-Chip Dynamic Mode Atomic Force Microscopy: A Silicon-on-Insulator MEMS Approach
journal, February 2017

  • Ruppert, Michael G.; Fowler, Anthony G.; Maroufi, Mohammad
  • Journal of Microelectromechanical Systems, Vol. 26, Issue 1
  • DOI: 10.1109/jmems.2016.2628890

On-Chip Feedthrough Cancellation Methods for Microfabricated AFM Cantilevers With Integrated Piezoelectric Transducers
journal, December 2017

  • Coskun, M. Bulut; Fowler, Anthony G.; Maroufi, Mohammad
  • Journal of Microelectromechanical Systems, Vol. 26, Issue 6
  • DOI: 10.1109/jmems.2017.2731762

$Q$ Control of an Active AFM Cantilever With Differential Sensing Configuration
journal, September 2019

  • Coskun, M. Bulut; Alemansour, Hamed; Fowler, Anthony G.
  • IEEE Transactions on Control Systems Technology, Vol. 27, Issue 5
  • DOI: 10.1109/tcst.2018.2850338

Feedback-Controlled MEMS Force Sensor for Characterization of Microcantilevers
journal, August 2015

  • Moore, Steven Ian; Coskun, M. Bulut; Alan, Tuncay
  • Journal of Microelectromechanical Systems, Vol. 24, Issue 4
  • DOI: 10.1109/jmems.2014.2382648

Integrated tunneling sensor for nanoelectromechanical systems
journal, October 2006

  • Sadewasser, S.; Abadal, G.; Barniol, N.
  • Applied Physics Letters, Vol. 89, Issue 17
  • DOI: 10.1063/1.2362593

A method for in situ characterization of tip shape in ac-mode atomic force microscopy using electrostatic interaction
journal, October 1998

  • Olsson, L.; Lin, N.; Yakimov, V.
  • Journal of Applied Physics, Vol. 84, Issue 8
  • DOI: 10.1063/1.368618

Observation of Liquid Neck Formation with Scanning Force Microscopy Techniques
journal, April 1998

  • Colchero, J.; Storch, A.; Luna, M.
  • Langmuir, Vol. 14, Issue 9
  • DOI: 10.1021/la971150z