skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic Control on the Depth Distribution of Superdeep Diamonds

Abstract

Superdeep diamonds contain unique information from the sublithospheric regions of Earth's interior. Recent studies imply that reaction between subducted carbonate and iron metal in the mantle plays an important role in the production of superdeep diamonds. It is unknown if this reaction is kinetically feasible in cold slabs subducted into the deep mantle. In this work we introduce experimental data on real-time tracking of the magnesite-iron reaction at high pressures and high temperatures to demonstrate the production of diamond at the surface conditions of cold slabs in the transition zone and lower mantle. Our data reveal that the diamond production rate has a positive temperature dependence and a negative pressure dependence, and along a slab geotherm it decreases by a factor of three at pressures from 14.4 to 18.4 GPa. This rate reduction provides an explanation for the rarity of superdeep diamonds from the interior of the mantle transition zone.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4];  [5]
  1. Univ. of Michigan, Ann Arbor, MI (United States); Univ. of Hawaii, Honolulu, HI (United States)
  2. Univ. of Michigan, Ann Arbor, MI (United States)
  3. Univ. of Michigan, Ann Arbor, MI (United States); Univ. of Texas, Austin, TX (United States)
  4. Univ. of Hawaii, Honolulu, HI (United States)
  5. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; USDOE National Nuclear Security Administration (NNSA); National Science Foundation (NSF); Alfred P. Sloan Foundation
OSTI Identifier:
1548285
Alternate Identifier(s):
OSTI ID: 1494957
Grant/Contract Number:  
AC02-06CH11357; NA0001974; G‐2017‐9954; G‐2016‐7157; AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 46; Journal Issue: 4; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; reaction kinetics; redox reaction; slab-mantle interaction; superdeep diamond

Citation Formats

Zhu, Feng, Li, Jie, Liu, Jiachao, Lai, Xiaojing, Chen, Bin, and Meng, Yue. Kinetic Control on the Depth Distribution of Superdeep Diamonds. United States: N. p., 2018. Web. doi:10.1029/2018gl080740.
Zhu, Feng, Li, Jie, Liu, Jiachao, Lai, Xiaojing, Chen, Bin, & Meng, Yue. Kinetic Control on the Depth Distribution of Superdeep Diamonds. United States. doi:10.1029/2018gl080740.
Zhu, Feng, Li, Jie, Liu, Jiachao, Lai, Xiaojing, Chen, Bin, and Meng, Yue. Fri . "Kinetic Control on the Depth Distribution of Superdeep Diamonds". United States. doi:10.1029/2018gl080740. https://www.osti.gov/servlets/purl/1548285.
@article{osti_1548285,
title = {Kinetic Control on the Depth Distribution of Superdeep Diamonds},
author = {Zhu, Feng and Li, Jie and Liu, Jiachao and Lai, Xiaojing and Chen, Bin and Meng, Yue},
abstractNote = {Superdeep diamonds contain unique information from the sublithospheric regions of Earth's interior. Recent studies imply that reaction between subducted carbonate and iron metal in the mantle plays an important role in the production of superdeep diamonds. It is unknown if this reaction is kinetically feasible in cold slabs subducted into the deep mantle. In this work we introduce experimental data on real-time tracking of the magnesite-iron reaction at high pressures and high temperatures to demonstrate the production of diamond at the surface conditions of cold slabs in the transition zone and lower mantle. Our data reveal that the diamond production rate has a positive temperature dependence and a negative pressure dependence, and along a slab geotherm it decreases by a factor of three at pressures from 14.4 to 18.4 GPa. This rate reduction provides an explanation for the rarity of superdeep diamonds from the interior of the mantle transition zone.},
doi = {10.1029/2018gl080740},
journal = {Geophysical Research Letters},
number = 4,
volume = 46,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Structural refinements of magnesite at very high pressure
journal, August 2002

  • Fiquet, Guillaume; Guyot, François; Kunz, Martin
  • American Mineralogist, Vol. 87, Issue 8-9
  • DOI: 10.2138/am-2002-8-927

Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle
journal, March 2004

  • Frost, Daniel J.; Liebske, Christian; Langenhorst, Falko
  • Nature, Vol. 428, Issue 6981
  • DOI: 10.1038/nature02413

Development of a Software Suite on X-ray Diffraction Experiments
journal, January 2010

  • Seto, Yusuke; Nishio-Hamane, Daisuke; Nagai, Takaya
  • The Review of High Pressure Science and Technology, Vol. 20, Issue 3
  • DOI: 10.4131/jshpreview.20.269

The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle
journal, March 2017


Kankan diamonds (Guinea) II: lower mantle inclusion parageneses
journal, November 2000

  • Stachel, Thomas; Harris, Jeff W.; Brey, Gerhard P.
  • Contributions to Mineralogy and Petrology, Vol. 140, Issue 1
  • DOI: 10.1007/s004100000174

Kankan diamonds (Guinea) I: from the lithosphere down to the transition zone
journal, November 2000

  • Stachel, Thomas; Brey, Gerhard P.; Harris, Jeff W.
  • Contributions to Mineralogy and Petrology, Vol. 140, Issue 1
  • DOI: 10.1007/s004100000173

The role of rocks saturated with metallic iron in the formation of ferric carbonate-silicate melts: experimental modeling under PT-conditions of lithospheric mantle
journal, January 2015

  • Bataleva, Yu. V.; Palyanov, Yu. N.; Sokol, A. G.
  • Russian Geology and Geophysics, Vol. 56, Issue 1-2
  • DOI: 10.1016/j.rgg.2015.01.008

The reactions between iron and magnesite at 6 GPa and 1273–1873 K: Implication to reduction of subducted carbonate in the deep mantle
journal, January 2015

  • Martirosyan, Naira S.; Litasov, Konstantin D.; Shatskiy, Anton
  • Journal of Mineralogical and Petrological Sciences, Vol. 110, Issue 2
  • DOI: 10.2465/jmps.141003a

Pyroxene solid solution in garnets included in diamond
journal, December 1985

  • Moore, Rory O.; Gurney, John J.
  • Nature, Vol. 318, Issue 6046
  • DOI: 10.1038/318553a0

Large gem diamonds from metallic liquid in Earth’s deep mantle
journal, December 2016


An alternative interpretation of lower mantle mineral associations in diamonds
journal, October 2002


Equation of state of γ-Fe: Reference density for planetary cores
journal, August 2013

  • Tsujino, Noriyoshi; Nishihara, Yu; Nakajima, Yoichi
  • Earth and Planetary Science Letters, Vol. 375
  • DOI: 10.1016/j.epsl.2013.05.040

Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere
journal, May 1996

  • Kirby, Stephen H.; Stein, Seth; Okal, Emile A.
  • Reviews of Geophysics, Vol. 34, Issue 2
  • DOI: 10.1029/96RG01050

Metal saturation in the upper mantle
journal, September 2007

  • Rohrbach, Arno; Ballhaus, Chris; Golla–Schindler, Ute
  • Nature, Vol. 449, Issue 7161
  • DOI: 10.1038/nature06183

A diffusion mechanism for core–mantle interaction
journal, November 2007


Primary carbonatite melt from deeply subducted oceanic crust
journal, July 2008

  • Walter, M. J.; Bulanova, G. P.; Armstrong, L. S.
  • Nature, Vol. 454, Issue 7204
  • DOI: 10.1038/nature07132

The deep carbon cycle and melting in Earth's interior
journal, September 2010


Redox freezing and melting in the Earth’s deep mantle resulting from carbon–iron redox coupling
journal, March 2011


The global range of subduction zone thermal models
journal, November 2010

  • Syracuse, Ellen M.; van Keken, Peter E.; Abers, Geoffrey A.
  • Physics of the Earth and Planetary Interiors, Vol. 183, Issue 1-2
  • DOI: 10.1016/j.pepi.2010.02.004

Carbonate stability in the reduced lower mantle
journal, May 2018

  • Dorfman, Susannah M.; Badro, James; Nabiei, Farhang
  • Earth and Planetary Science Letters, Vol. 489
  • DOI: 10.1016/j.epsl.2018.02.035

The high-pressure anisotropic thermoelastic properties of a potential inner core carbon-bearing phase, Fe7C3, by single-crystal X-ray diffraction
journal, October 2018

  • Lai, Xiaojing; Zhu, Feng; Liu, Jiachao
  • American Mineralogist, Vol. 103, Issue 10
  • DOI: 10.2138/am-2018-6527

New developments in laser-heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure Collaborative Access Team
journal, July 2015

  • Meng, Yue; Hrubiak, Rostislav; Rod, Eric
  • Review of Scientific Instruments, Vol. 86, Issue 7
  • DOI: 10.1063/1.4926895

Optical Determination of Topotactic Aragonite-Calcite Growth Kinetics: Metamorphic Implications
journal, September 1981

  • Carlson, William D.; Rosenfeld, John L.
  • The Journal of Geology, Vol. 89, Issue 5
  • DOI: 10.1086/628626

Thermodynamic parameters in the Earth as determined from seismic profiles
journal, September 1981


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Stability and equation of state of Fe 3 C to 73 GPa: Implications for carbon in the Earth's core
journal, May 2001

  • Scott, Henry P.; Williams, Quentin; Knittle, Elise
  • Geophysical Research Letters, Vol. 28, Issue 9
  • DOI: 10.1029/2000GL012606

Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle
journal, November 2005

  • Tappert, Ralf; Stachel, Thomas; Harris, Jeff W.
  • Contributions to Mineralogy and Petrology, Vol. 150, Issue 5
  • DOI: 10.1007/s00410-005-0035-6

Spin transition and equations of state of (Mg, Fe)O solid solutions
journal, January 2007

  • Fei, Yingwei; Zhang, Li; Corgne, Alexandre
  • Geophysical Research Letters, Vol. 34, Issue 17
  • DOI: 10.1029/2007GL030712

Stagnant Slab: A Review
journal, May 2009


Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar
journal, January 1967

  • Mao, Ho‐Kwang; Bassett, William A.; Takahashi, Taro
  • Journal of Applied Physics, Vol. 38, Issue 1
  • DOI: 10.1063/1.1708965

Ultradeep diamonds originate from deep subducted sedimentary carbonates
journal, October 2016


Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions
journal, January 1986

  • Mao, H. K.; Xu, J.; Bell, P. M.
  • Journal of Geophysical Research, Vol. 91, Issue B5, p. 4673-4676
  • DOI: 10.1029/JB091iB05p04673

Mantle-slab interaction and redox mechanism of diamond formation
journal, December 2013

  • Palyanov, Y. N.; Bataleva, Y. V.; Sokol, A. G.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 51
  • DOI: 10.1073/pnas.1313340110

Hydrous mantle transition zone indicated by ringwoodite included within diamond
journal, March 2014

  • Pearson, D. G.; Brenker, F. E.; Nestola, F.
  • Nature, Vol. 507, Issue 7491
  • DOI: 10.1038/nature13080

Inclusions in Sublithospheric Diamonds: Glimpses of Deep Earth
journal, March 2005


Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media
journal, January 1986

  • Jephcoat, Andrew P.; Mao, H. K.; Bell, Peter M.
  • Journal of Geophysical Research, Vol. 91, Issue B5
  • DOI: 10.1029/JB091iB05p04677

Models for the Archean thermal regime
journal, May 1985


High pressure–high temperature equations of state of neon and diamond
journal, March 2008

  • Dewaele, Agnès; Datchi, Frédéric; Loubeyre, Paul
  • Physical Review B, Vol. 77, Issue 9, Article No. 094106
  • DOI: 10.1103/PhysRevB.77.094106

Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies)
journal, January 2012

  • Leinenweber, K. D.; Tyburczy, J. A.; Sharp, T. G.
  • American Mineralogist, Vol. 97, Issue 2-3
  • DOI: 10.2138/am.2012.3844

Melting curve of NaCl to 20 GPa from electrical measurements of capacitive current
journal, August 2015