DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors

Abstract

The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. In this paper, the resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum 252 Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is 4. 8 - 0 . 9 + 0 . 7 % lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at ~ 4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to ~ 75% at 100 keV. Finally, the impact of these measurements on previously published CDMS II silicon results is small.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Univ. of South Dakota, Vermillion, SD (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
CDMS Collaboration
OSTI Identifier:
1598290
Alternate Identifier(s):
OSTI ID: 1463333; OSTI ID: 1548071
Report Number(s):
PNNL-SA-133385
Journal ID: ISSN 0168-9002; TRN: US1902283
Grant/Contract Number:  
SC0015657; AC05-76RL01830; AC02-07CH11359; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 905; Journal Issue: C; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; dark matter; detector calibration; nuclear-recoil energy scale; ionization yield

Citation Formats

Agnese, R., Anderson, A. J., Aramaki, T., Baker, W., Balakishiyeva, D., Banik, S., Barker, D., Basu Thakur, R., Bauer, D. A., Binder, T., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., CerdeΓ±o, D. G., Chang, Y. -Y., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Doughty, T., Dragowsky, E. M., Esteban, L., Fallows, S., Fascione, E., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Germond, R., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Holmgren, D., Hong, Z., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Jena, C., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Lopez Asamar, E., Lukens, P., MacDonell, D., Mahapatra, R., Mandic, V., Mast, N., McCarthy, K. A., Miller, E. H., Mirabolfathi, N., Moffatt, R. A., Mohanty, B., Moore, D., Morales Mendoza, J. D., Nelson, J., Oser, S. M., Page, K., Page, W. A., Partridge, R., Penalver Martinez, M., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Rogers, H. E., Robinson, A. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Scorza, S., Senapati, K., Serfass, B., Speller, D., Di Stefano, P. C. F., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wilson, M. J., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., and Zhao, X. Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors. United States: N. p., 2018. Web. doi:10.1016/j.nima.2018.07.028.
Agnese, R., Anderson, A. J., Aramaki, T., Baker, W., Balakishiyeva, D., Banik, S., Barker, D., Basu Thakur, R., Bauer, D. A., Binder, T., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., CerdeΓ±o, D. G., Chang, Y. -Y., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Doughty, T., Dragowsky, E. M., Esteban, L., Fallows, S., Fascione, E., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Germond, R., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Holmgren, D., Hong, Z., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Jena, C., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Lopez Asamar, E., Lukens, P., MacDonell, D., Mahapatra, R., Mandic, V., Mast, N., McCarthy, K. A., Miller, E. H., Mirabolfathi, N., Moffatt, R. A., Mohanty, B., Moore, D., Morales Mendoza, J. D., Nelson, J., Oser, S. M., Page, K., Page, W. A., Partridge, R., Penalver Martinez, M., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Rogers, H. E., Robinson, A. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Scorza, S., Senapati, K., Serfass, B., Speller, D., Di Stefano, P. C. F., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wilson, M. J., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., & Zhao, X. Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors. United States. https://doi.org/10.1016/j.nima.2018.07.028
Agnese, R., Anderson, A. J., Aramaki, T., Baker, W., Balakishiyeva, D., Banik, S., Barker, D., Basu Thakur, R., Bauer, D. A., Binder, T., Borgland, A., Bowles, M. A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, D. O., Calkins, R., Cartaro, C., CerdeΓ±o, D. G., Chang, Y. -Y., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Cushman, P., Daal, M., Doughty, T., Dragowsky, E. M., Esteban, L., Fallows, S., Fascione, E., Figueroa-Feliciano, E., Fritts, M., Gerbier, G., Germond, R., Ghaith, M., Godfrey, G. L., Golwala, S. R., Hall, J., Harris, H. R., Holmgren, D., Hong, Z., Hsu, L., Huber, M. E., Iyer, V., Jardin, D., Jastram, A., Jena, C., Kelsey, M. H., Kennedy, A., Kubik, A., Kurinsky, N. A., Leder, A., Lopez Asamar, E., Lukens, P., MacDonell, D., Mahapatra, R., Mandic, V., Mast, N., McCarthy, K. A., Miller, E. H., Mirabolfathi, N., Moffatt, R. A., Mohanty, B., Moore, D., Morales Mendoza, J. D., Nelson, J., Oser, S. M., Page, K., Page, W. A., Partridge, R., Penalver Martinez, M., Pepin, M., Phipps, A., Poudel, S., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Roberts, A., Rogers, H. E., Robinson, A. E., Saab, T., Sadoulet, B., Sander, J., Schneck, K., Schnee, R. W., Scorza, S., Senapati, K., Serfass, B., Speller, D., Di Stefano, P. C. F., Stein, M., Street, J., Tanaka, H. A., Toback, D., Underwood, R., Villano, A. N., von Krosigk, B., Welliver, B., Wilson, J. S., Wilson, M. J., Wright, D. H., Yellin, S., Yen, J. J., Young, B. A., Zhang, X., and Zhao, X. Wed . "Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors". United States. https://doi.org/10.1016/j.nima.2018.07.028. https://www.osti.gov/servlets/purl/1598290.
@article{osti_1598290,
title = {Nuclear-recoil energy scale in CDMS II silicon dark-matter detectors},
author = {Agnese, R. and Anderson, A. J. and Aramaki, T. and Baker, W. and Balakishiyeva, D. and Banik, S. and Barker, D. and Basu Thakur, R. and Bauer, D. A. and Binder, T. and Borgland, A. and Bowles, M. A. and Brink, P. L. and Bunker, R. and Cabrera, B. and Caldwell, D. O. and Calkins, R. and Cartaro, C. and CerdeΓ±o, D. G. and Chang, Y. -Y. and Chagani, H. and Chen, Y. and Cooley, J. and Cornell, B. and Cushman, P. and Daal, M. and Doughty, T. and Dragowsky, E. M. and Esteban, L. and Fallows, S. and Fascione, E. and Figueroa-Feliciano, E. and Fritts, M. and Gerbier, G. and Germond, R. and Ghaith, M. and Godfrey, G. L. and Golwala, S. R. and Hall, J. and Harris, H. R. and Holmgren, D. and Hong, Z. and Hsu, L. and Huber, M. E. and Iyer, V. and Jardin, D. and Jastram, A. and Jena, C. and Kelsey, M. H. and Kennedy, A. and Kubik, A. and Kurinsky, N. A. and Leder, A. and Lopez Asamar, E. and Lukens, P. and MacDonell, D. and Mahapatra, R. and Mandic, V. and Mast, N. and McCarthy, K. A. and Miller, E. H. and Mirabolfathi, N. and Moffatt, R. A. and Mohanty, B. and Moore, D. and Morales Mendoza, J. D. and Nelson, J. and Oser, S. M. and Page, K. and Page, W. A. and Partridge, R. and Penalver Martinez, M. and Pepin, M. and Phipps, A. and Poudel, S. and Pyle, M. and Qiu, H. and Rau, W. and Redl, P. and Reisetter, A. and Roberts, A. and Rogers, H. E. and Robinson, A. E. and Saab, T. and Sadoulet, B. and Sander, J. and Schneck, K. and Schnee, R. W. and Scorza, S. and Senapati, K. and Serfass, B. and Speller, D. and Di Stefano, P. C. F. and Stein, M. and Street, J. and Tanaka, H. A. and Toback, D. and Underwood, R. and Villano, A. N. and von Krosigk, B. and Welliver, B. and Wilson, J. S. and Wilson, M. J. and Wright, D. H. and Yellin, S. and Yen, J. J. and Young, B. A. and Zhang, X. and Zhao, X.},
abstractNote = {The Cryogenic Dark Matter Search (CDMS II) experiment aims to detect dark matter particles that elastically scatter from nuclei in semiconductor detectors. In this paper, the resulting nuclear-recoil energy depositions are detected by ionization and phonon sensors. Neutrons produce a similar spectrum of low-energy nuclear recoils in such detectors, while most other backgrounds produce electron recoils. The absolute energy scale for nuclear recoils is necessary to interpret results correctly. The energy scale can be determined in CDMS II silicon detectors using neutrons incident from a broad-spectrum 252Cf source, taking advantage of a prominent resonance in the neutron elastic scattering cross section of silicon at a recoil (neutron) energy near 20 (182) keV. Results indicate that the phonon collection efficiency for nuclear recoils is 4.8-0.9+0.7% lower than for electron recoils of the same energy. Comparisons of the ionization signals for nuclear recoils to those measured previously by other groups at higher electric fields indicate that the ionization collection efficiency for CDMS II silicon detectors operated at ~4 V/cm is consistent with 100% for nuclear recoils below 20 keV and gradually decreases for larger energies to ~75% at 100 keV. Finally, the impact of these measurements on previously published CDMS II silicon results is small.},
doi = {10.1016/j.nima.2018.07.028},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = C,
volume = 905,
place = {United States},
year = {Wed Jul 18 00:00:00 EDT 2018},
month = {Wed Jul 18 00:00:00 EDT 2018}
}

Journal Article:

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Calibration of a silicon detector’s ionization energy scale using the ionization collected from 133Ba gamma rays that deposited energy in both the silicon detector (T4Z1) and an adjacent germanium detector (T4Z2). The scatter plot shows the ionization energy 𝐸𝑄 in the neighboring germanium detector as a function ofmore » the silicon-detector ionization energy. Events for which the full energy of 133Ba 356 keV gamma rays is deposited in the detector pair follow a diagonal feature (dashed line), enabling calibration of the silicon-detector energy scale and demonstrating linearity of the silicon-detector ionization response up to >350 keV. Inset: Same data histogrammed (with bin width 0.02) to show the ratio of the silicon-detector ionization energy to the expected 356 keV gamma-ray energy less the germanium-detector ionization energy. A peak is clearly visible (dashed line) corresponding to 356 keV gamma rays that are fully contained by the detector pair.« less

Save / Share:

Works referenced in this record:

New results from DAMA/LIBRA
journal, March 2010


Cosmological constraints on the properties of weakly interacting massive particles
journal, January 1985


Dark Matter Candidates from Particle Physics and Methods of Detection
journal, August 2010


Cosmological constraints on the properties of weakly interacting massive particles
journal, January 1985


Detectability of certain dark-matter candidates
journal, June 1985


Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil
journal, December 1996


Low-threshold analysis of CDMS shallow-site data
journal, December 2010


New results from DAMA/LIBRA
journal, March 2010


Results from a Search for Light-Mass Dark Matter with a p -Type Point Contact Germanium Detector
journal, March 2011


Results from 730 kg days of the CRESST-II Dark Matter search
journal, April 2012


Silicon Detector Dark Matter Results from the Final Exposure of CDMS II
journal, December 2013


Improved WIMP-search reach of the CDMS II germanium data
journal, October 2015


Design and performance of a modular low-radioactivity readout system for cryogenic detectors in the CDMS experiment
journal, July 2008

  • Akerib, D. S.; Barnes Jr., P. D.; Brink, P. L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 591, Issue 3
  • DOI: 10.1016/j.nima.2008.03.103

Voltage‐assisted calorimetric ionization detector
journal, December 1988

  • Luke, P. N.
  • Journal of Applied Physics, Vol. 64, Issue 12
  • DOI: 10.1063/1.341976

Simulations of Noise in Phase-Separated Transition-Edge Sensors for SuperCDMS
journal, February 2012

  • Anderson, A. J.; Leman, S. W.; Pyle, M.
  • Journal of Low Temperature Physics, Vol. 167, Issue 3-4
  • DOI: 10.1007/s10909-012-0555-1

New libraries for simulating neutron scattering in dark matter detector calibrations
journal, March 2014


Results from a Low-Energy Analysis of the CDMS II Germanium Data
journal, March 2011


Energy deposition of energetic silicon atoms within a silicon lattice
journal, April 1990


Measurement of the ionization of slow silicon nuclei in silicon for the calibration of a silicon dark-matter detector
journal, November 1990


Measurements of ionization produced in silicon crystals by low-energy silicon atoms
journal, February 1992


Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector
journal, October 2016

  • Chavarria, A. E.; Collar, J. I.; PeΓ±a, J. R.
  • Physical Review D, Vol. 94, Issue 8
  • DOI: 10.1103/PhysRevD.94.082007

A measurement of the ionization efficiency of nuclear recoils in silicon
journal, June 2017


Ionization Produced by Energetic Silicon Atoms within a Silicon Lattice
journal, June 1965


Projected sensitivity of the SuperCDMS SNOLAB experiment
journal, April 2017


ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
journal, December 2006


JENDL-4.0: A New Library for Nuclear Science and Engineering
journal, January 2011

  • Shibata, Keiichi; Iwamoto, Osamu; Nakagawa, Tsuneo
  • Journal of Nuclear Science and Technology, Vol. 48, Issue 1
  • DOI: 10.1080/18811248.2011.9711675

Geant4β€”a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8