skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-monotonic effect of growth temperature on carrier collection in SnS solar cells

Abstract

We quantify the effects of growth temperature on material and device properties of thermally evaporated SnS thin-films and test structures. Grain size, Hall mobility, and majority-carrier concentration monotonically increase with growth temperature. Yet, the charge collection as measured by the long-wavelength contribution to short-circuit current exhibits a non-monotonic behavior: the collection decreases with increased growth temperature from 150 °C to 240 °C and then recovers at 285 °C. Fits to the experimental internal quantum efficiency using an opto-electronic model indicate that the non-monotonic behavior of charge-carrier collection can be explained by a transition from drift- to diffusion-assisted components of carrier collection. The results reflect a promising increase in the extracted minority-carrier diffusion length at the highest growth temperature of 285 °C. These findings demonstrate how coupled mechanisms can affect early stage device development, highlighting the critical role of direct materials property measurements and simulation.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [2];  [2];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Harvard Univ., Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S); National Science Foundation (NSF)
OSTI Identifier:
1547010
Alternate Identifier(s):
OSTI ID: 1226742
Grant/Contract Number:  
EE0005329
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 106; Journal Issue: 20; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Chakraborty, R., Steinmann, V., Mangan, N. M., Brandt, R. E., Poindexter, J. R., Jaramillo, R., Mailoa, J. P., Hartman, K., Polizzotti, A., Yang, C., Gordon, R. G., and Buonassisi, T. Non-monotonic effect of growth temperature on carrier collection in SnS solar cells. United States: N. p., 2015. Web. doi:10.1063/1.4921326.
Chakraborty, R., Steinmann, V., Mangan, N. M., Brandt, R. E., Poindexter, J. R., Jaramillo, R., Mailoa, J. P., Hartman, K., Polizzotti, A., Yang, C., Gordon, R. G., & Buonassisi, T. Non-monotonic effect of growth temperature on carrier collection in SnS solar cells. United States. doi:10.1063/1.4921326.
Chakraborty, R., Steinmann, V., Mangan, N. M., Brandt, R. E., Poindexter, J. R., Jaramillo, R., Mailoa, J. P., Hartman, K., Polizzotti, A., Yang, C., Gordon, R. G., and Buonassisi, T. Mon . "Non-monotonic effect of growth temperature on carrier collection in SnS solar cells". United States. doi:10.1063/1.4921326. https://www.osti.gov/servlets/purl/1547010.
@article{osti_1547010,
title = {Non-monotonic effect of growth temperature on carrier collection in SnS solar cells},
author = {Chakraborty, R. and Steinmann, V. and Mangan, N. M. and Brandt, R. E. and Poindexter, J. R. and Jaramillo, R. and Mailoa, J. P. and Hartman, K. and Polizzotti, A. and Yang, C. and Gordon, R. G. and Buonassisi, T.},
abstractNote = {We quantify the effects of growth temperature on material and device properties of thermally evaporated SnS thin-films and test structures. Grain size, Hall mobility, and majority-carrier concentration monotonically increase with growth temperature. Yet, the charge collection as measured by the long-wavelength contribution to short-circuit current exhibits a non-monotonic behavior: the collection decreases with increased growth temperature from 150 °C to 240 °C and then recovers at 285 °C. Fits to the experimental internal quantum efficiency using an opto-electronic model indicate that the non-monotonic behavior of charge-carrier collection can be explained by a transition from drift- to diffusion-assisted components of carrier collection. The results reflect a promising increase in the extracted minority-carrier diffusion length at the highest growth temperature of 285 °C. These findings demonstrate how coupled mechanisms can affect early stage device development, highlighting the critical role of direct materials property measurements and simulation.},
doi = {10.1063/1.4921326},
journal = {Applied Physics Letters},
number = 20,
volume = 106,
place = {United States},
year = {2015},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermally evaporated thin films of SnS for application in solar cell devices
journal, July 2009

  • Miles, Robert W.; Ogah, Ogah E.; Zoppi, Guillaume
  • Thin Solid Films, Vol. 517, Issue 17, p. 4702-4705
  • DOI: 10.1016/j.tsf.2009.03.003

SnS thin-films by RF sputtering at room temperature
journal, August 2011

  • Hartman, Katy; Johnson, J. L.; Bertoni, Mariana I.
  • Thin Solid Films, Vol. 519, Issue 21, p. 7421-7424
  • DOI: 10.1016/j.tsf.2010.12.186

Photovoltaic properties of SnS based solar cells
journal, November 2006

  • Ramakrishna Reddy, K. T.; Koteswara Reddy, N.; Miles, R. W.
  • Solar Energy Materials and Solar Cells, Vol. 90, Issue 18-19, p. 3041-3046
  • DOI: 10.1016/j.solmat.2006.06.012

Characterization of vacuum-evaporated tin sulfide film for solar cell materials
journal, September 1994

  • Noguchi, Hidenori; Setiyadi, Agus; Tanamura, Hiromasa
  • Solar Energy Materials and Solar Cells, Vol. 35, p. 325-331
  • DOI: 10.1016/0927-0248(94)90158-9

Atomic Layer Deposition of Tin Monosulfide Thin Films
journal, September 2011

  • Sinsermsuksakul, Prasert; Heo, Jaeyeong; Noh, Wontae
  • Advanced Energy Materials, Vol. 1, Issue 6, p. 1116-1125
  • DOI: 10.1002/aenm.201100330

High efficiency CSS CdTe solar cells
journal, February 2000