skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries

Abstract

The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (~10 μm) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. In this work, we report on a polymer–polymer solid-state electrolyte design, demonstrated with an 8.6-μm-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 × 10-4 S cm-1 at 30 °C) of the infused polymer electrolyte. Lastly, all-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 °C and withstand abuse tests such as bending, cutting and nail penetration.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3];  [1];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [3]; ORCiD logo [1]; ORCiD logo [4]
  1. Stanford Univ., CA (United States)
  2. ShanghaiTech Univ. (China)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1546972
Grant/Contract Number:  
AC02-76SF00515; EE0007803
Resource Type:
Accepted Manuscript
Journal Name:
Nature Nanotechnology
Additional Journal Information:
Journal Volume: 14; Journal Issue: 7; Journal ID: ISSN 1748-3387
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Wan, Jiayu, Xie, Jin, Kong, Xian, Liu, Zhe, Liu, Kai, Shi, Feifei, Pei, Allen, Chen, Hao, Chen, Wei, Chen, Jun, Zhang, Xiaokun, Zong, Linqi, Wang, Jiangyan, Chen, Long-Qing, Qin, Jian, and Cui, Yi. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. United States: N. p., 2019. Web. doi:10.1038/s41565-019-0465-3.
Wan, Jiayu, Xie, Jin, Kong, Xian, Liu, Zhe, Liu, Kai, Shi, Feifei, Pei, Allen, Chen, Hao, Chen, Wei, Chen, Jun, Zhang, Xiaokun, Zong, Linqi, Wang, Jiangyan, Chen, Long-Qing, Qin, Jian, & Cui, Yi. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. United States. doi:10.1038/s41565-019-0465-3.
Wan, Jiayu, Xie, Jin, Kong, Xian, Liu, Zhe, Liu, Kai, Shi, Feifei, Pei, Allen, Chen, Hao, Chen, Wei, Chen, Jun, Zhang, Xiaokun, Zong, Linqi, Wang, Jiangyan, Chen, Long-Qing, Qin, Jian, and Cui, Yi. Mon . "Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries". United States. doi:10.1038/s41565-019-0465-3. https://www.osti.gov/servlets/purl/1546972.
@article{osti_1546972,
title = {Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries},
author = {Wan, Jiayu and Xie, Jin and Kong, Xian and Liu, Zhe and Liu, Kai and Shi, Feifei and Pei, Allen and Chen, Hao and Chen, Wei and Chen, Jun and Zhang, Xiaokun and Zong, Linqi and Wang, Jiangyan and Chen, Long-Qing and Qin, Jian and Cui, Yi},
abstractNote = {The urgent need for safer batteries is leading research to all-solid-state lithium-based cells. To achieve energy density comparable to liquid electrolyte-based cells, ultrathin and lightweight solid electrolytes with high ionic conductivity are desired. However, solid electrolytes with comparable thicknesses to commercial polymer electrolyte separators (~10 μm) used in liquid electrolytes remain challenging to make because of the increased risk of short-circuiting the battery. In this work, we report on a polymer–polymer solid-state electrolyte design, demonstrated with an 8.6-μm-thick nanoporous polyimide (PI) film filled with polyethylene oxide/lithium bis(trifluoromethanesulfonyl)imide (PEO/LiTFSI) that can be used as a safe solid polymer electrolyte. The PI film is nonflammable and mechanically strong, preventing batteries from short-circuiting even after more than 1,000 h of cycling, and the vertical channels enhance the ionic conductivity (2.3 × 10-4 S cm-1 at 30 °C) of the infused polymer electrolyte. Lastly, all-solid-state lithium-ion batteries fabricated with PI/PEO/LiTFSI solid electrolyte show good cycling performance (200 cycles at C/2 rate) at 60 °C and withstand abuse tests such as bending, cutting and nail penetration.},
doi = {10.1038/s41565-019-0465-3},
journal = {Nature Nanotechnology},
number = 7,
volume = 14,
place = {United States},
year = {2019},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 73 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries
journal, June 2017


In Situ Neutron Depth Profiling of Lithium Metal–Garnet Interfaces for Solid State Batteries
journal, September 2017

  • Wang, Chengwei; Gong, Yunhui; Dai, Jiaqi
  • Journal of the American Chemical Society, Vol. 139, Issue 40
  • DOI: 10.1021/jacs.7b07904

Lithium Ion Pathway within Li 7 La 3 Zr 2 O 12 -Polyethylene Oxide Composite Electrolytes
journal, September 2016

  • Zheng, Jin; Tang, Mingxue; Hu, Yan-Yan
  • Angewandte Chemie International Edition, Vol. 55, Issue 40
  • DOI: 10.1002/anie.201607539

High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
journal, January 2019


Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Design principles for solid-state lithium superionic conductors
journal, August 2015

  • Wang, Yan; Richards, William Davidson; Ong, Shyue Ping
  • Nature Materials, Vol. 14, Issue 10
  • DOI: 10.1038/nmat4369

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Near-surface alignment of polymers in rubbed films
journal, April 1995

  • Toney, Michael F.; Russell, Thomas P.; Logan, J. Anthony
  • Nature, Vol. 374, Issue 6524
  • DOI: 10.1038/374709a0

Safety-Reinforced Poly(Propylene Carbonate)-Based All-Solid-State Polymer Electrolyte for Ambient-Temperature Solid Polymer Lithium Batteries
journal, October 2015

  • Zhang, Jianjun; Zhao, Jianghui; Yue, Liping
  • Advanced Energy Materials, Vol. 5, Issue 24
  • DOI: 10.1002/aenm.201501082

Poly(ethylene oxide)-based electrolytes for lithium-ion batteries
journal, January 2015

  • Xue, Zhigang; He, Dan; Xie, Xiaolin
  • Journal of Materials Chemistry A, Vol. 3, Issue 38
  • DOI: 10.1039/C5TA03471J

Simple Route for Tuning the Morphology and Conductivity of Polymer Electrolytes: One End Functional Group is Enough
journal, October 2013

  • Jo, Gyuha; Ahn, Hyungmin; Park, Moon Jeong
  • ACS Macro Letters, Vol. 2, Issue 11
  • DOI: 10.1021/mz400468m

Solvent-Free Composite PEO-Ceramic Fiber/Mat Electrolytes for Lithium Secondary Cells
journal, January 2005

  • Wang, Chunsheng; Zhang, Xiang-Wu; Appleby, A. John
  • Journal of The Electrochemical Society, Vol. 152, Issue 1
  • DOI: 10.1149/1.1828952

Nanocomposite polymer electrolytes for lithium batteries
journal, July 1998

  • Croce, F.; Appetecchi, G. B.; Persi, L.
  • Nature, Vol. 394, Issue 6692
  • DOI: 10.1038/28818

Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries
journal, December 2015

  • Villaluenga, Irune; Wujcik, Kevin H.; Tong, Wei
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 1
  • DOI: 10.1073/pnas.1520394112

High thermal conductivity of chain-oriented amorphous polythiophene
journal, March 2014

  • Singh, Virendra; Bougher, Thomas L.; Weathers, Annie
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.44

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

GROMACS: Fast, flexible, and free
journal, January 2005

  • Van Der Spoel, David; Lindahl, Erik; Hess, Berk
  • Journal of Computational Chemistry, Vol. 26, Issue 16
  • DOI: 10.1002/jcc.20291

A Battery Made from a Single Material
journal, April 2015


Mastering the interface for advanced all-solid-state lithium rechargeable batteries
journal, November 2016

  • Li, Yutao; Zhou, Weidong; Chen, Xi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 47
  • DOI: 10.1073/pnas.1615912113

Ion transport mechanisms in lamellar phases of salt-doped PS–PEO block copolymer electrolytes
journal, January 2017

  • Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat
  • Soft Matter, Vol. 13, Issue 42
  • DOI: 10.1039/C7SM01345K

Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
journal, February 2012


Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries
journal, March 2017


Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries
journal, January 2017

  • Fu, Kun (Kelvin); Gong, Yunhui; Hitz, Gregory T.
  • Energy & Environmental Science, Vol. 10, Issue 7
  • DOI: 10.1039/C7EE01004D

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


High-power all-solid-state batteries using sulfide superionic conductors
journal, March 2016


Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes
journal, July 2015


"Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries
journal, November 2015


Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries
journal, June 2016

  • Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 26
  • DOI: 10.1073/pnas.1600422113

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Highly conductive oriented PEO-based polymer electrolytes
journal, October 2003

  • Golodnitsky, D.; Livshits, E.; Peled, E.
  • Macromolecular Symposia, Vol. 203, Issue 1
  • DOI: 10.1002/masy.200351303

Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries
journal, January 2018


The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes
journal, November 2013

  • Harry, Katherine J.; Hallinan, Daniel T.; Parkinson, Dilworth Y.
  • Nature Materials, Vol. 13, Issue 1
  • DOI: 10.1038/nmat3793

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Increasing the conductivity of crystalline polymer electrolytes
journal, January 2005

  • Christie, Alasdair M.; Lilley, Scott J.; Staunton, Edward
  • Nature, Vol. 433, Issue 7021
  • DOI: 10.1038/nature03186

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes
journal, October 2017

  • Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 42
  • DOI: 10.1073/pnas.1708489114

Lithium Ion Pathway within Li 7 La 3 Zr 2 O 12 -Polyethylene Oxide Composite Electrolytes
journal, September 2016


    Works referencing / citing this record:

    Perpendicular MXene Arrays with Periodic Interspaces toward Dendrite‐Free Lithium Metal Anodes with High‐Rate Capabilities
    journal, November 2019

    • Cao, Zhenjiang; Zhu, Qi; Wang, Shuai
    • Advanced Functional Materials, Vol. 30, Issue 5
    • DOI: 10.1002/adfm.201908075

    Nacre‐Inspired Composite Electrolytes for Load‐Bearing Solid‐State Lithium‐Metal Batteries
    journal, November 2019


    Plating/Stripping Behavior of Actual Lithium Metal Anode
    journal, October 2019


    Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries
    journal, November 2019

    • Wu, Jingyi; Rao, Zhixiang; Cheng, Zexiao
    • Advanced Energy Materials, Vol. 9, Issue 46
    • DOI: 10.1002/aenm.201902767

    MXene‐Based Mesoporous Nanosheets Toward Superior Lithium Ion Conductors
    journal, January 2020


    Revealing an Interconnected Interfacial Layer in Solid‐State Polymer Sodium Batteries
    journal, November 2019


    A Sodiophilic Interphase‐Mediated, Dendrite‐Free Anode with Ultrahigh Specific Capacity for Sodium‐Metal Batteries
    journal, November 2019


    Enhanced Surface Interactions Enable Fast Li + Conduction in Oxide/Polymer Composite Electrolyte
    journal, January 2020


    Revealing an Interconnected Interfacial Layer in Solid‐State Polymer Sodium Batteries
    journal, November 2019

    • Zhao, Chenglong; Liu, Lilu; Lu, Yaxiang
    • Angewandte Chemie International Edition, Vol. 58, Issue 47
    • DOI: 10.1002/anie.201909877

    A Sodiophilic Interphase‐Mediated, Dendrite‐Free Anode with Ultrahigh Specific Capacity for Sodium‐Metal Batteries
    journal, November 2019

    • Ye, Lei; Liao, Meng; Zhao, Tiancheng
    • Angewandte Chemie International Edition, Vol. 58, Issue 47
    • DOI: 10.1002/anie.201910202

    Designing solid-state electrolytes for safe, energy-dense batteries
    journal, February 2020


    A self-powered solar-blind photodetector with large V oc enhancing performance based on the PEDOT:PSS/Ga 2 O 3 organic–inorganic hybrid heterojunction
    journal, January 2020

    • Li, Shan; Yan, Zuyong; Liu, Zeng
    • Journal of Materials Chemistry C, Vol. 8, Issue 4
    • DOI: 10.1039/c9tc06011a

    Preparation of Nanocomposite Polymer Electrolyte via In Situ Synthesis of SiO2 Nanoparticles in PEO
    journal, January 2020