High x-ray resolving power utilizing asymmetric diffraction from a quartz transmission crystal measured in the 6 keV to 22 keV energy range
- National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
- SLAC National Accelerator Lab., Menlo Park, CA (United States)
- Artep Inc., Ellicott City, MD (United States)
We report a Cauchois-type spectrometer utilizing the (203) lattice planes at an oblique angle of 11.53° to the normal to the surface of a quartz transmission crystal recorded the Kα and Kβ spectral lines of six elements from Fe to Ag in the 6–22 keV energy range from a laboratory x-ray source. After deconvolving the natural lifetime widths and the image plate detector broadening from the observed spectral linewidths, the intrinsic crystal resolving power was determined to be 4000 at the lower energies and decreasing to 1000 at the higher energies. Previously, a Si wafer crystal exhibited twice this resolving power when the (331) planes had been used in asymmetric geometry. The investigation of diffraction with this quartz crystal, with a very similar lattice spacing and therefore spectral coverage, was motivated by the larger integrated reflectivity of quartz due to its well-known quasimosaicity upon elastic bending. The measured spectral linewidths were in good agreement with the widths calculated by accounting for various broadening mechanisms, including source size, crystal thickness, crystal height, crystal rocking curve width, geometrical aberrations, and possible spectrometer configuration errors. This is the first, to the best of our knowledge, demonstration of high resolving power achieved by asymmetric diffraction over a wide energy range (6–22 keV) and with detailed comparisons with theoretical broadenings. Finally, based on these results, Cauchois spectrometers employing asymmetric planes of perfect quartz and silicon crystals can be reliably designed and optimized for high-resolution spectroscopy in the >6 keV energy range.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Fusion Energy Sciences (FES)
- Grant/Contract Number:
- AC02-76SF00515; SF00515
- OSTI ID:
- 1546963
- Alternate ID(s):
- OSTI ID: 1529437
- Journal Information:
- Applied Optics, Vol. 58, Issue 19; ISSN 1559-128X
- Publisher:
- Optical Society of AmericaCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
X-ray spectrometers with cylindrical, spherical and toroidal dispersive elements
TIME-RESOLVED 1-10 keV CRYSTAL SPECTROMETER FOR THE Z MACHINE AT SANDIA NATIONAL LABORATORIES