skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The purported square ice in bilayer graphene is a nanoscale, monolayer object

Abstract

The phase diagram of water is complex, and interfacial effects can stabilize unusual structures at the nanoscale. In this paper, we employ bond order accelerated molecular dynamics simulations to show that upon encapsulation within bilayer graphene, water can spontaneously adopt a two-dimensional (monomolecular) layer of “square ice” at ambient conditions, instead of an encapsulated water droplet. Free energy calculations show that this motif is thermodynamically stable up to diameters of approximately 15 nm due to enhanced hydrogen bonding and favorable binding to the graphene sheets. Entropic losses due to solidification and reduced graphene–graphene binding enthalpy are opposing thermodynamic forces that conspire to limit the maximum size, but modification of any of these thermodynamic factors should change the range of stability. Finally, simulated core-level spectroscopy reveals unambiguous orientation dependent signatures of square ice that should be discernable in experiments.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Univ. of California San Diego, La Jolla, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Univ. of Nevada, Las Vegas, NV (United States)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1546948
Alternate Identifier(s):
OSTI ID: 1526787
Grant/Contract Number:  
AC02-76SF00515; AC02-05CH11231; NA0001982; EERE Bridge Project No. 25860
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 23; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Pascal, Tod A., Schwartz, Craig P., Lawler, Keith V., and Prendergast, David. The purported square ice in bilayer graphene is a nanoscale, monolayer object. United States: N. p., 2019. Web. doi:10.1063/1.5109468.
Pascal, Tod A., Schwartz, Craig P., Lawler, Keith V., & Prendergast, David. The purported square ice in bilayer graphene is a nanoscale, monolayer object. United States. doi:10.1063/1.5109468.
Pascal, Tod A., Schwartz, Craig P., Lawler, Keith V., and Prendergast, David. Tue . "The purported square ice in bilayer graphene is a nanoscale, monolayer object". United States. doi:10.1063/1.5109468. https://www.osti.gov/servlets/purl/1546948.
@article{osti_1546948,
title = {The purported square ice in bilayer graphene is a nanoscale, monolayer object},
author = {Pascal, Tod A. and Schwartz, Craig P. and Lawler, Keith V. and Prendergast, David},
abstractNote = {The phase diagram of water is complex, and interfacial effects can stabilize unusual structures at the nanoscale. In this paper, we employ bond order accelerated molecular dynamics simulations to show that upon encapsulation within bilayer graphene, water can spontaneously adopt a two-dimensional (monomolecular) layer of “square ice” at ambient conditions, instead of an encapsulated water droplet. Free energy calculations show that this motif is thermodynamically stable up to diameters of approximately 15 nm due to enhanced hydrogen bonding and favorable binding to the graphene sheets. Entropic losses due to solidification and reduced graphene–graphene binding enthalpy are opposing thermodynamic forces that conspire to limit the maximum size, but modification of any of these thermodynamic factors should change the range of stability. Finally, simulated core-level spectroscopy reveals unambiguous orientation dependent signatures of square ice that should be discernable in experiments.},
doi = {10.1063/1.5109468},
journal = {Journal of Chemical Physics},
number = 23,
volume = 150,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Graphene Nanobubbles Produced by Water Splitting
journal, April 2017


The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids
journal, December 2003

  • Lin, Shiang-Tai; Blanco, Mario; Goddard, William A.
  • The Journal of Chemical Physics, Vol. 119, Issue 22
  • DOI: 10.1063/1.1624057

Charge equilibration for molecular dynamics simulations
journal, April 1991

  • Rappe, Anthony K.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 95, Issue 8
  • DOI: 10.1021/j100161a070

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Water as an Active Constituent in Cell Biology
journal, January 2008


A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions
journal, August 1933

  • Bernal, J. D.; Fowler, R. H.
  • The Journal of Chemical Physics, Vol. 1, Issue 8
  • DOI: 10.1063/1.1749327

Intrinsic ripples in graphene
journal, September 2007

  • Fasolino, A.; Los, J. H.; Katsnelson, M. I.
  • Nature Materials, Vol. 6, Issue 11
  • DOI: 10.1038/nmat2011

Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water
journal, March 2019

  • Yun, Yonghwan; Khaliullin, Rustam Z.; Jung, Yousung
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 8
  • DOI: 10.1021/acs.jpclett.9b00921

Structural and dynamic characteristics in monolayer square ice
journal, July 2017

  • Zhu, YinBo; Wang, FengChao; Wu, HengAn
  • The Journal of Chemical Physics, Vol. 147, Issue 4
  • DOI: 10.1063/1.4995432

The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
journal, June 2002

  • Wagner, W.; Pruß, A.
  • Journal of Physical and Chemical Reference Data, Vol. 31, Issue 2
  • DOI: 10.1063/1.1461829

Graphene bubbles with controllable curvature
journal, August 2011

  • Georgiou, T.; Britnell, L.; Blake, P.
  • Applied Physics Letters, Vol. 99, Issue 9
  • DOI: 10.1063/1.3631632

The structure of ambient water
journal, June 2010

  • Clark, Gary N. I.; Cappa, Christopher D.; Smith, Jared D.
  • Molecular Physics, Vol. 108, Issue 11
  • DOI: 10.1080/00268971003762134

Two-Dimensional Material Confined Water
journal, December 2014

  • Li, Qiang; Song, Jie; Besenbacher, Flemming
  • Accounts of Chemical Research, Vol. 48, Issue 1
  • DOI: 10.1021/ar500306w

Order-parameter-aided temperature-accelerated sampling for the exploration of crystal polymorphism and solid-liquid phase transitions
journal, June 2014

  • Yu, Tang-Qing; Chen, Pei-Yang; Chen, Ming
  • The Journal of Chemical Physics, Vol. 140, Issue 21
  • DOI: 10.1063/1.4878665

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
journal, July 2008


Two-Phase Thermodynamic Model for Efficient and Accurate Absolute Entropy of Water from Molecular Dynamics Simulations
journal, June 2010

  • Lin, Shiang-Tai; Maiti, Prabal K.; Goddard, William A.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 24
  • DOI: 10.1021/jp103120q

Highly Confined Water: Two-Dimensional Ice, Amorphous Ice, and Clathrate Hydrates
journal, July 2014

  • Zhao, Wen-Hui; Wang, Lu; Bai, Jaeil
  • Accounts of Chemical Research, Vol. 47, Issue 8
  • DOI: 10.1021/ar5001549

Formation of ordered ice nanotubes inside carbon nanotubes
journal, August 2001

  • Koga, Kenichiro; Gao, G. T.; Tanaka, Hideki
  • Nature, Vol. 412, Issue 6849
  • DOI: 10.1038/35090532

Inhomogeneous Electron Gas
journal, November 1964


Bond-orientational order in liquids and glasses
journal, July 1983

  • Steinhardt, Paul J.; Nelson, David R.; Ronchetti, Marco
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/physrevb.28.784

Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies
journal, August 2011

  • Ganguly, Abhijit; Sharma, Surbhi; Papakonstantinou, Pagona
  • The Journal of Physical Chemistry C, Vol. 115, Issue 34
  • DOI: 10.1021/jp203741y

The observation of square ice in graphene questioned
journal, December 2015


The Structure of the First Coordination Shell in Liquid Water
journal, May 2004


Interfaces and the driving force of hydrophobic assembly
journal, September 2005


Is there a "hydrophobic effect"?
journal, January 1979

  • Hildebrand, J. H.
  • Proceedings of the National Academy of Sciences, Vol. 76, Issue 1
  • DOI: 10.1073/pnas.76.1.194

Quantum mechanics based force field for carbon (QMFF-Cx) validated to reproduce the mechanical and thermodynamics properties of graphite
journal, October 2010

  • Pascal, Tod A.; Karasawa, Naoki; Goddard, William A.
  • The Journal of Chemical Physics, Vol. 133, Issue 13
  • DOI: 10.1063/1.3456543

Structural and configurational properties of nanoconfined monolayer ice from first principles
journal, January 2016

  • Corsetti, Fabiano; Matthews, Paul; Artacho, Emilio
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep18651

Surface Tension Effects of Humic-Like Substances in the Aqueous Extract of Tropospheric Fine Aerosol
journal, March 2005

  • Kiss, Gyula; Tombácz, Etelka; Hansson, Hans-Christen
  • Journal of Atmospheric Chemistry, Vol. 50, Issue 3
  • DOI: 10.1007/s10874-005-5079-5

Ice vii, the Densest form of ice
journal, December 1964

  • Kamb, B.; Davis, B. L.
  • Proceedings of the National Academy of Sciences, Vol. 52, Issue 6
  • DOI: 10.1073/pnas.52.6.1433

Super Water-Repellent Surfaces Resulting from Fractal Structure
journal, January 1996

  • Shibuichi, Satoshi; Onda, Tomohiro; Satoh, Naoki
  • The Journal of Physical Chemistry, Vol. 100, Issue 50
  • DOI: 10.1021/jp9616728

Using collective variables to drive molecular dynamics simulations
journal, December 2013


Interfacial Thermodynamics of Water and Six Other Liquid Solvents
journal, May 2014

  • Pascal, Tod A.; Goddard, William A.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 22
  • DOI: 10.1021/jp410861h

Microemulsions and the flexibility of oil/water interfaces
journal, June 1982

  • De Gennes, P. G.; Taupin, C.
  • The Journal of Physical Chemistry, Vol. 86, Issue 13
  • DOI: 10.1021/j100210a011

Phase diagram of water in carbon nanotubes
journal, December 2007

  • Takaiwa, D.; Hatano, I.; Koga, K.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 1
  • DOI: 10.1073/pnas.0707917105

Equilibrium Free Energies from Nonequilibrium Metadynamics
journal, March 2006


Numerical calculation of the rate of crystal nucleation in a Lennard‐Jones system at moderate undercooling
journal, June 1996

  • Rein ten Wolde, Pieter; Ruiz‐Montero, Maria J.; Frenkel, Daan
  • The Journal of Chemical Physics, Vol. 104, Issue 24
  • DOI: 10.1063/1.471721

Dynamical fluctuating charge force fields: Application to liquid water
journal, October 1994

  • Rick, Steven W.; Stuart, Steven J.; Berne, B. J.
  • The Journal of Chemical Physics, Vol. 101, Issue 7
  • DOI: 10.1063/1.468398

Square ice in graphene nanocapillaries
journal, March 2015

  • Algara-Siller, G.; Lehtinen, O.; Wang, F. C.
  • Nature, Vol. 519, Issue 7544
  • DOI: 10.1038/nature14295

How to keep dry in water
journal, May 2003


Fracture mechanics of a new blister test with stable crack growth
journal, November 1995


Water Alignment and Proton Conduction inside Carbon Nanotubes
journal, May 2003


A Blister Test for Adhesion of Polymer Films to SiO 2
journal, November 1983


Higher-accuracy van der Waals density functional
journal, August 2010


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965