skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 27, 2020

Title: Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation

Abstract

For effective hydrogen generation with remarkable durability, carbon nanotubes (CNTs) grown on Ni nanofibers and their post hydroxylation treatment engendered active Ni nanofiber catalysts an efficient decomposition of hydrous hydrazine with a turnover frequency (TOF) of 19.4 h -1 and an activation energy down to 51.05 KJ mol -1.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [1];  [4];  [1];  [5];  [1];  [1];  [1];  [1];  [6];  [7];  [8];  [9]; ORCiD logo [10]
  1. Chinese Academy of Engineering Physics, Jiangyou (China)
  2. Max Planck Inst. for Chemical Energy Conversion, Mülheim (Germany)
  3. Hainan Univ., Haikou (China); Univ. of Tennessee, Knoxville, TN (United States)
  4. Southwest Minzu Univ., Chengdu (China)
  5. Univ. of Tennessee, Knoxville, TN (United States); Zhengzhou Univ., Zhengzhou (China)
  6. Zhengzhou Univ. of Light Industry, Zhengzhou (China)
  7. Shandong Univ. of Science and Technology, Qingdao (China)
  8. Henan Univ., Kaifeng (China)
  9. Guangzhou Univ., Guangzhou (China)
  10. Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; National Natural Science Foundation of China (NNSFC)
OSTI Identifier:
1546532
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 55; Journal Issue: 61; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 08 HYDROGEN

Citation Formats

Yang, Pan, Yang, Lijun, Gao, Qiang, Luo, Qiang, Zhao, Xiaochong, Mai, Xianmin, Fu, Qinglong, Dong, Mengyao, Wang, Jingchuan, Hao, Yawei, Yang, Ruizhu, Lai, Xinchun, Wu, Shide, Shao, Qian, Ding, Tao, Lin, Jing, and Guo, Zhanhu. Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation. United States: N. p., 2019. Web. doi:10.1039/C9CC04559G.
Yang, Pan, Yang, Lijun, Gao, Qiang, Luo, Qiang, Zhao, Xiaochong, Mai, Xianmin, Fu, Qinglong, Dong, Mengyao, Wang, Jingchuan, Hao, Yawei, Yang, Ruizhu, Lai, Xinchun, Wu, Shide, Shao, Qian, Ding, Tao, Lin, Jing, & Guo, Zhanhu. Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation. United States. doi:10.1039/C9CC04559G.
Yang, Pan, Yang, Lijun, Gao, Qiang, Luo, Qiang, Zhao, Xiaochong, Mai, Xianmin, Fu, Qinglong, Dong, Mengyao, Wang, Jingchuan, Hao, Yawei, Yang, Ruizhu, Lai, Xinchun, Wu, Shide, Shao, Qian, Ding, Tao, Lin, Jing, and Guo, Zhanhu. Thu . "Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation". United States. doi:10.1039/C9CC04559G.
@article{osti_1546532,
title = {Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation},
author = {Yang, Pan and Yang, Lijun and Gao, Qiang and Luo, Qiang and Zhao, Xiaochong and Mai, Xianmin and Fu, Qinglong and Dong, Mengyao and Wang, Jingchuan and Hao, Yawei and Yang, Ruizhu and Lai, Xinchun and Wu, Shide and Shao, Qian and Ding, Tao and Lin, Jing and Guo, Zhanhu},
abstractNote = {For effective hydrogen generation with remarkable durability, carbon nanotubes (CNTs) grown on Ni nanofibers and their post hydroxylation treatment engendered active Ni nanofiber catalysts an efficient decomposition of hydrous hydrazine with a turnover frequency (TOF) of 19.4 h-1 and an activation energy down to 51.05 KJ mol-1.},
doi = {10.1039/C9CC04559G},
journal = {ChemComm},
number = 61,
volume = 55,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 27, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

High capacity hydrogenstorage materials: attributes for automotive applications and techniques for materials discovery
journal, January 2010

  • Yang, Jun; Sudik, Andrea; Wolverton, Christopher
  • Chem. Soc. Rev., Vol. 39, Issue 2
  • DOI: 10.1039/B802882F

Facile Preparation of 1T/2H‐Mo(S 1‐x Se x ) 2 Nanoparticles for Boosting Hydrogen Evolution Reaction
journal, March 2019


Surface intercalated spherical MoS 2x Se 2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions
journal, January 2019

  • Lin, Bo; Lin, Zhiping; Chen, Shougang
  • Dalton Transactions, Vol. 48, Issue 23
  • DOI: 10.1039/C9DT01218D

Hydrogen carriers
journal, October 2016


Preparation and hydrogen storage of Pd/MIL-101 nanocomposites
journal, January 2019


Energy storage applications of activated carbons: supercapacitors and hydrogen storage
journal, January 2014

  • Sevilla, Marta; Mokaya, Robert
  • Energy Environ. Sci., Vol. 7, Issue 4
  • DOI: 10.1039/C3EE43525C

Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage
journal, January 2015

  • Zhu, Qi-Long; Xu, Qiang
  • Energy & Environmental Science, Vol. 8, Issue 2
  • DOI: 10.1039/C4EE03690E

A comparative overview of hydrogen production processes
journal, January 2017


A noble-metal-free nanocatalyst for highly efficient and complete hydrogen evolution from N 2 H 4 BH 3
journal, January 2018

  • Yao, Qilu; Lu, Zhang-Hui; Zhang, Rui
  • Journal of Materials Chemistry A, Vol. 6, Issue 10
  • DOI: 10.1039/C7TA10886A

Complete Conversion of Hydrous Hydrazine to Hydrogen at Room Temperature for Chemical Hydrogen Storage
journal, December 2009

  • Singh, Sanjay Kumar; Xu, Qiang
  • Journal of the American Chemical Society, Vol. 131, Issue 50
  • DOI: 10.1021/ja908037t

Noble-Metal-Free Bimetallic Nanoparticle-Catalyzed Selective Hydrogen Generation from Hydrous Hydrazine for Chemical Hydrogen Storage
journal, December 2011

  • Singh, Sanjay Kumar; Singh, Ashish Kumar; Aranishi, Kengo
  • Journal of the American Chemical Society, Vol. 133, Issue 49
  • DOI: 10.1021/ja208475y

Hydrogen generation from hydrous hydrazine over Ni/CeO2 catalysts prepared by solution combustion synthesis
journal, January 2018


Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis
journal, May 2016

  • Kang, Yuyang; Yang, Yongqiang; Yin, Li-Chang
  • Advanced Materials, Vol. 28, Issue 30
  • DOI: 10.1002/adma.201601567

Ni–C–N Nanosheets as Catalyst for Hydrogen Evolution Reaction
journal, October 2016

  • Yin, Jie; Fan, Qiaohui; Li, Yuxuan
  • Journal of the American Chemical Society, Vol. 138, Issue 44
  • DOI: 10.1021/jacs.6b09351

Low temperature decomposition of hydrous hydrazine over FeNi/Cu nanoparticles
journal, April 2014


A study of degradation phenomenon of Ni–Pt/CeO2 catalyst towards hydrogen generation from hydrous hydrazine
journal, June 2017


Supported nickel–iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O
journal, January 2014

  • Gao, Wa; Li, Changming; Chen, Hao
  • Green Chemistry, Vol. 16, Issue 3
  • DOI: 10.1039/c3gc41939h

A Noble-Metal-Free Catalyst Derived from Ni-Al Hydrotalcite for Hydrogen Generation from N2H4⋅H2O Decomposition
journal, May 2012

  • He, Lei; Huang, Yanqiang; Wang, Aiqin
  • Angewandte Chemie International Edition, Vol. 51, Issue 25
  • DOI: 10.1002/anie.201201737

Yolk–Satellite–Shell Structured Ni–Yolk@Ni@SiO 2 Nanocomposite: Superb Catalyst toward Methane CO 2 Reforming Reaction
journal, April 2014

  • Li, Ziwei; Mo, Liuye; Kathiraser, Yasotha
  • ACS Catalysis, Vol. 4, Issue 5
  • DOI: 10.1021/cs401027p

Hollow nickel-coated silica microspheres containing rhodium nanoparticles for highly selective production of hydrogen from hydrous hydrazine
journal, January 2014

  • Yoo, Jung Bo; Kim, Han Sol; Kang, Seung Hee
  • J. Mater. Chem. A, Vol. 2, Issue 44
  • DOI: 10.1039/C4TA03550J

In situ synthesis of Ni nanofibers via vacuum thermal reduction and their efficient catalytic properties for hydrogen generation
journal, January 2018

  • Fu, Qinglong; Yang, Pan; Wang, Jingchuan
  • Journal of Materials Chemistry A, Vol. 6, Issue 24
  • DOI: 10.1039/C8TA03464H

Catalyst surfaces with tunable hydrophilicity and hydrophobicity: metal–organic frameworks toward controllable catalytic selectivity
journal, January 2018

  • Chen, Xinyi; Qian, Panpan; Zhang, Tao
  • Chemical Communications, Vol. 54, Issue 32
  • DOI: 10.1039/C8CC00318A

Importance of Zeolite Wettability for Selective Hydrogenation of Furfural over Pd@Zeolite Catalysts
journal, December 2017


Growing a hydrophilic nanoporous shell on a hydrophobic catalyst interface for aqueous reactions with high reaction efficiency and in situ catalyst recycling
journal, January 2017

  • Hao, Yajuan; Jiao, Xuan; Zou, Houbing
  • Journal of Materials Chemistry A, Vol. 5, Issue 31
  • DOI: 10.1039/C6TA11124F

Chemical reactions confined within carbon nanotubes
journal, January 2016

  • Miners, Scott A.; Rance, Graham A.; Khlobystov, Andrei N.
  • Chemical Society Reviews, Vol. 45, Issue 17
  • DOI: 10.1039/C6CS00090H

Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications
journal, January 2017

  • Zhang, Rufan; Zhang, Yingying; Wei, Fei
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C7CS00104E

Low-Temperature in Situ Growth of Graphene on Metallic Substrates and Its Application in Anticorrosion
journal, December 2015

  • Zhu, Minmin; Du, Zehui; Yin, Zongyou
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 1
  • DOI: 10.1021/acsami.5b09453

Three dimensional hybrid multi-layered graphene–CNT catalyst supports via rapid thermal annealing of nickel acetate
journal, January 2017

  • Samuels, Thomas O. M.; Robertson, Alex W.; Kim, Heeyeon
  • Journal of Materials Chemistry A, Vol. 5, Issue 21
  • DOI: 10.1039/C7TA01852E

Porous hierarchical nickel nanostructures and their application as a magnetically separable catalyst
journal, January 2012

  • Xiong, Jingfang; Shen, Hu; Mao, Junxian
  • Journal of Materials Chemistry, Vol. 22, Issue 24
  • DOI: 10.1039/c2jm30361b

Thermal decomposition of nickel acetate tetrahydrate: an integrated study by TGA, QMS and XPS techniques
journal, March 2005

  • De Jesus, Juan C.; González, Ismael; Quevedo, Angel
  • Journal of Molecular Catalysis A: Chemical, Vol. 228, Issue 1-2
  • DOI: 10.1016/j.molcata.2004.09.065

A RhNiP/rGO hybrid for efficient catalytic hydrogen generation from an alkaline solution of hydrazine
journal, January 2016

  • Du, Xiaoqiong; Tan, Shiyi; Cai, Ping
  • Journal of Materials Chemistry A, Vol. 4, Issue 38
  • DOI: 10.1039/C6TA05917A

CeOx-modified NiFe nanodendrits grown on rGO for efficient catalytic hydrogen generation from alkaline solution of hydrazine
journal, November 2017


Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles
journal, January 2018


Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature
journal, January 2013

  • Wang, Hong-Li; Yan, Jun-Min; Wang, Zhi-Li
  • Journal of Materials Chemistry A, Vol. 1, Issue 47
  • DOI: 10.1039/c3ta13259e