skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Entropy-Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO2 Fixation

Abstract

High-entropy materials refer to a kind of materials in which five or more metal species were incorporated deliberately into a single lattice with random occupancy. Up to now, such a concept has been only restricted to hard materials, such as high-entropy alloys and ceramics. Herein we report the synthesis of hybrid high-entropy materials, polymetallic zeolitic imidazolate framework (also named as high-entropy zeolitic imidazolate framework, HE-ZIF), via entropy-driven room-temperature mechanochemistry. HE-ZIF contains five metals including ZnII, CoII, CdII, NiII, and CuII which are dispersed in the ZIF structure randomly. Moreover, HE-ZIF shows enhanced catalytic conversion of CO2 into carbonate compared with ZIF-8 presumably a result of the synergistic effect of the five metal ions as Lewis acid in epoxide activation.

Authors:
 [1];  [2]; ORCiD logo [3];  [3];  [4]; ORCiD logo [3]
  1. Ningbo Univ. (China); Univ. of Tennessee, Knoxville, TN (United States)
  2. Univ. of Tennessee, Knoxville, TN (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Ningbo Univ. (China)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1546506
Alternate Identifier(s):
OSTI ID: 1498180
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 58; Journal Issue: 15; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Xu, Wei, Chen, Hao, Jie, Kecheng, Yang, Zhenzhen, Li, Tingting, and Dai, Sheng. Entropy-Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO2 Fixation. United States: N. p., 2019. Web. doi:10.1002/anie.201900787.
Xu, Wei, Chen, Hao, Jie, Kecheng, Yang, Zhenzhen, Li, Tingting, & Dai, Sheng. Entropy-Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO2 Fixation. United States. doi:10.1002/anie.201900787.
Xu, Wei, Chen, Hao, Jie, Kecheng, Yang, Zhenzhen, Li, Tingting, and Dai, Sheng. Mon . "Entropy-Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO2 Fixation". United States. doi:10.1002/anie.201900787. https://www.osti.gov/servlets/purl/1546506.
@article{osti_1546506,
title = {Entropy-Driven Mechanochemical Synthesis of Polymetallic Zeolitic Imidazolate Frameworks for CO2 Fixation},
author = {Xu, Wei and Chen, Hao and Jie, Kecheng and Yang, Zhenzhen and Li, Tingting and Dai, Sheng},
abstractNote = {High-entropy materials refer to a kind of materials in which five or more metal species were incorporated deliberately into a single lattice with random occupancy. Up to now, such a concept has been only restricted to hard materials, such as high-entropy alloys and ceramics. Herein we report the synthesis of hybrid high-entropy materials, polymetallic zeolitic imidazolate framework (also named as high-entropy zeolitic imidazolate framework, HE-ZIF), via entropy-driven room-temperature mechanochemistry. HE-ZIF contains five metals including ZnII, CoII, CdII, NiII, and CuII which are dispersed in the ZIF structure randomly. Moreover, HE-ZIF shows enhanced catalytic conversion of CO2 into carbonate compared with ZIF-8 presumably a result of the synergistic effect of the five metal ions as Lewis acid in epoxide activation.},
doi = {10.1002/anie.201900787},
journal = {Angewandte Chemie (International Edition)},
number = 15,
volume = 58,
place = {United States},
year = {2019},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies
journal, February 2006

  • Huang, Xiao-Chun; Lin, Yan-Yong; Zhang, Jie-Peng
  • Angewandte Chemie International Edition, Vol. 45, Issue 10, p. 1557-1559
  • DOI: 10.1002/anie.200503778

Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies
journal, February 2006

  • Huang, Xiao-Chun; Lin, Yan-Yong; Zhang, Jie-Peng
  • Angewandte Chemie, Vol. 118, Issue 10, p. 1587-1589
  • DOI: 10.1002/ange.200503778

Exceptional chemical and thermal stability of zeolitic imidazolate frameworks
journal, June 2006

  • Park, K. S.; Ni, Z.; Cote, A. P.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 27, p. 10186-10191
  • DOI: 10.1073/pnas.0602439103

High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture
journal, February 2008


Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks
journal, January 2010

  • Phan, Anh; Doonan, Christian J.; Uribe-Romo, Fernando J.
  • Accounts of Chemical Research, Vol. 43, Issue 1, p. 58-67
  • DOI: 10.1021/ar900116g

Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity
journal, March 2011

  • Huang, Aisheng; Caro, Jürgen
  • Angewandte Chemie International Edition, Vol. 50, Issue 21
  • DOI: 10.1002/anie.201007861

Kovalente postsynthetische Funktionalisierung einer ZIF-90-MOF-Membran zur Erhöhung ihrer Wasserstoffselektivität
journal, March 2011


Structural Descriptors of Zeolitic–Imidazolate Frameworks Are Keys to the Activity of Fe–N–C Catalysts
journal, December 2016

  • Armel, Vanessa; Hindocha, Sheena; Salles, Fabrice
  • Journal of the American Chemical Society, Vol. 139, Issue 1
  • DOI: 10.1021/jacs.6b11248

In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework
journal, March 2015

  • Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7662

Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye
journal, January 2012

  • Yang, Hui; He, Xin-Wei; Wang, Fei
  • Journal of Materials Chemistry, Vol. 22, Issue 41
  • DOI: 10.1039/c2jm35602c

Cu 2+ -doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions
journal, January 2015

  • Schejn, Aleksandra; Aboulaich, Abdelhay; Balan, Lavinia
  • Catalysis Science & Technology, Vol. 5, Issue 3
  • DOI: 10.1039/C4CY01505C

Carbothermal shock synthesis of high-entropy-alloy nanoparticles
journal, March 2018


Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi
journal, December 2015

  • Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10143

Entropy-stabilized oxides
journal, September 2015

  • Rost, Christina M.; Sachet, Edward; Borman, Trent
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9485

Local structure of the Mg x Ni x Co x Cu x Zn x O( x =0.2) entropy-stabilized oxide: An EXAFS study
journal, April 2017

  • Rost, Christina M.; Rak, Zsolt; Brenner, Donald W.
  • Journal of the American Ceramic Society, Vol. 100, Issue 6
  • DOI: 10.1111/jace.14756

Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability
journal, January 2018

  • Chen, Hao; Fu, Jie; Zhang, Pengfei
  • Journal of Materials Chemistry A, Vol. 6, Issue 24
  • DOI: 10.1039/C8TA01772G

High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics
journal, November 2016

  • Gild, Joshua; Zhang, Yuanyao; Harrington, Tyler
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep37946

Mechanochemical-Assisted Synthesis of High-Entropy Metal Nitride via a Soft Urea Strategy
journal, April 2018

  • Jin, Tian; Sang, Xiahan; Unocic, Raymond R.
  • Advanced Materials, Vol. 30, Issue 23
  • DOI: 10.1002/adma.201707512

Mechanochemistry:  The Mechanical Activation of Covalent Bonds
journal, August 2005

  • Beyer, Martin K.; Clausen-Schaumann, Hauke
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr030697h

Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs)
journal, January 2016

  • Tan, Davin; Loots, Leigh; Friščić, Tomislav
  • Chemical Communications, Vol. 52, Issue 50
  • DOI: 10.1039/C6CC02015A

Enthalpy vs. friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks
journal, January 2018

  • Užarević, Krunoslav; Ferdelji, Nenad; Mrla, Tomislav
  • Chemical Science, Vol. 9, Issue 9
  • DOI: 10.1039/C7SC05312F

Advancing polymers of intrinsic microporosity by mechanochemistry
journal, January 2015

  • Zhang, Pengfei; Jiang, Xueguang; Wan, Shun
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C4TA07196D

Solid-State Synthesis of Conjugated Nanoporous Polycarbazoles
journal, September 2017


Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks
journal, March 2013

  • Biswal, Bishnu P.; Chandra, Suman; Kandambeth, Sharath
  • Journal of the American Chemical Society, Vol. 135, Issue 14
  • DOI: 10.1021/ja4017842

Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas
journal, September 2010

  • Klimakow, Maria; Klobes, Peter; Thünemann, Andreas F.
  • Chemistry of Materials, Vol. 22, Issue 18
  • DOI: 10.1021/cm1012119

Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal-Organic Frameworks Reveals Salt Inclusion and Anion Templating
journal, December 2009

  • Friščić, Tomislav; Reid, David G.; Halasz, Ivan
  • Angewandte Chemie International Edition, Vol. 49, Issue 4
  • DOI: 10.1002/anie.200906583

Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal-Organic Frameworks Reveals Salt Inclusion and Anion Templating
journal, December 2009

  • Friščić, Tomislav; Reid, David G.; Halasz, Ivan
  • Angewandte Chemie, Vol. 122, Issue 4
  • DOI: 10.1002/ange.200906583

Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry
journal, November 2010

  • Beldon, Patrick J.; Fábián, László; Stein, Robin S.
  • Angewandte Chemie International Edition, Vol. 49, Issue 50
  • DOI: 10.1002/anie.201005547

Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry
journal, November 2010

  • Beldon, Patrick J.; Fábián, László; Stein, Robin S.
  • Angewandte Chemie, Vol. 122, Issue 50
  • DOI: 10.1002/ange.201005547

Real-time and in situ monitoring of mechanochemical milling reactions
journal, December 2012

  • Friščić, Tomislav; Halasz, Ivan; Beldon, Patrick J.
  • Nature Chemistry, Vol. 5, Issue 1
  • DOI: 10.1038/nchem.1505

Microwave-Assisted, Ni-Induced Fabrication of Hollow ZIF-8 Nanoframes for the Knoevenagel Reaction
journal, April 2018


Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8
journal, July 2018


Synthesis of Manganese ZIF-8 from [Mn(BH 4 ) 2 ·3THF]·NaBH 4
journal, July 2017


Synthesis of magnesium ZIF-8 from Mg(BH 4 ) 2
journal, January 2015

  • Horike, S.; Kadota, K.; Itakura, T.
  • Dalton Transactions, Vol. 44, Issue 34
  • DOI: 10.1039/C5DT01183C

A Triazole-Containing Metal–Organic Framework as a Highly Effective and Substrate Size-Dependent Catalyst for CO 2 Conversion
journal, February 2016

  • Li, Pei-Zhou; Wang, Xiao-Jun; Liu, Jia
  • Journal of the American Chemical Society, Vol. 138, Issue 7
  • DOI: 10.1021/jacs.5b13335

Zeolitic Imidazole Framework-8 Catalysts in the Conversion of CO 2 to Chloropropene Carbonate
journal, December 2011

  • Miralda, Carmen M.; Macias, Eugenia E.; Zhu, Minqi
  • ACS Catalysis, Vol. 2, Issue 1
  • DOI: 10.1021/cs200638h

Zeolitic imidazole framework-67 as an efficient heterogeneous catalyst for the conversion of CO 2 to cyclic carbonates
journal, January 2016

  • Mousavi, Bibimaryam; Chaemchuen, Somboon; Moosavi, Behrooz
  • New Journal of Chemistry, Vol. 40, Issue 6
  • DOI: 10.1039/C6NJ00128A

Metal–Organic Framework-Based Catalysts: Chemical Fixation of CO2 with Epoxides Leading to Cyclic Organic Carbonates
journal, January 2015

  • Beyzavi, M. Hassan; Stephenson, Casey J.; Liu, Yangyang
  • Frontiers in Energy Research, Vol. 2
  • DOI: 10.3389/fenrg.2014.00063

    Works referencing / citing this record:

    Synthesis, structure and magnetic properties of a novel high-nuclearity oxo-carboxylate [Zn x Co 13–x4 -O) 4 (O 2 CPh) 18 ] cluster
    journal, January 2019

    • Nawrocki, Jan; Prochowicz, Daniel; Justyniak, Iwona
    • Dalton Transactions, Vol. 48, Issue 34
    • DOI: 10.1039/c9dt02791b

    A series of dysprosium-based hydrogen-bonded organic frameworks (Dy–HOFs): thermally triggered off → on conversion of a single-ion magnet
    journal, January 2019

    • Wang, Hai-Ling; Ma, Xiong-Feng; Zhu, Zhong-Hong
    • Inorganic Chemistry Frontiers, Vol. 6, Issue 10
    • DOI: 10.1039/c9qi00582j

    Synthesis, structure and magnetic properties of a novel high-nuclearity oxo-carboxylate [Zn x Co 13–x4 -O) 4 (O 2 CPh) 18 ] cluster
    journal, January 2019

    • Nawrocki, Jan; Prochowicz, Daniel; Justyniak, Iwona
    • Dalton Transactions, Vol. 48, Issue 34
    • DOI: 10.1039/c9dt02791b

    A series of dysprosium-based hydrogen-bonded organic frameworks (Dy–HOFs): thermally triggered off → on conversion of a single-ion magnet
    journal, January 2019

    • Wang, Hai-Ling; Ma, Xiong-Feng; Zhu, Zhong-Hong
    • Inorganic Chemistry Frontiers, Vol. 6, Issue 10
    • DOI: 10.1039/c9qi00582j