skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 8, 2020

Title: Patterning Si at the 1 nm Length Scale with Aberration-Corrected Electron-Beam Lithography: Tuning of Plasmonic Properties by Design

Abstract

Patterning of materials at single nanometer resolution allows engineering of quantum confinement effects, as these effects are significant at these length scales, and yields direct control over electro-optical properties. Silicon is by far the most important material in electronics, and the ability to fabricate Si-based devices of the smallest dimensions for novel device engineering is highly desirable. Here, the work presented here uses aberration-corrected electron-beam lithography combined with dry reactive ion etching to achieve both: patterning of 1-nm features and surface and volume plasmon engineering in Si. The nanofabrication technique employed here produces nanowires with a line edge roughness (LER) of 1 nm (3σ). In addition, this work demonstrates tuning of the Si volume plasmon energy by 1.2 eV from the bulk value, which is one order of magnitude higher than previous attempts of volume plasmon engineering using lithographic methods.

Authors:
 [1]; ORCiD logo [1];  [1];  [1];  [1];  [1];  [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1546045
Alternate Identifier(s):
OSTI ID: 1532423
Report Number(s):
[BNL-211915-2019-JAAM]
[Journal ID: ISSN 1616-301X]
Grant/Contract Number:  
[SC0012704; DE‐SC0012704]
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
[ Journal Volume: 29; Journal Issue: 52]; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
29 ENERGY PLANNING, POLICY AND ECONOMY; aberration correction; atomic scale; EELS; electron‐beam lithography; line edge roughness; nanofabrication; plasmonics; silicon patterning; volume plasmon

Citation Formats

Manfrinato, Vitor R., Camino, Fernando E., Stein, Aaron, Zhang, Lihua, Lu, Ming, Stach, Eric A., and Black, Charles T. Patterning Si at the 1 nm Length Scale with Aberration-Corrected Electron-Beam Lithography: Tuning of Plasmonic Properties by Design. United States: N. p., 2019. Web. doi:10.1002/adfm.201903429.
Manfrinato, Vitor R., Camino, Fernando E., Stein, Aaron, Zhang, Lihua, Lu, Ming, Stach, Eric A., & Black, Charles T. Patterning Si at the 1 nm Length Scale with Aberration-Corrected Electron-Beam Lithography: Tuning of Plasmonic Properties by Design. United States. doi:10.1002/adfm.201903429.
Manfrinato, Vitor R., Camino, Fernando E., Stein, Aaron, Zhang, Lihua, Lu, Ming, Stach, Eric A., and Black, Charles T. Mon . "Patterning Si at the 1 nm Length Scale with Aberration-Corrected Electron-Beam Lithography: Tuning of Plasmonic Properties by Design". United States. doi:10.1002/adfm.201903429.
@article{osti_1546045,
title = {Patterning Si at the 1 nm Length Scale with Aberration-Corrected Electron-Beam Lithography: Tuning of Plasmonic Properties by Design},
author = {Manfrinato, Vitor R. and Camino, Fernando E. and Stein, Aaron and Zhang, Lihua and Lu, Ming and Stach, Eric A. and Black, Charles T.},
abstractNote = {Patterning of materials at single nanometer resolution allows engineering of quantum confinement effects, as these effects are significant at these length scales, and yields direct control over electro-optical properties. Silicon is by far the most important material in electronics, and the ability to fabricate Si-based devices of the smallest dimensions for novel device engineering is highly desirable. Here, the work presented here uses aberration-corrected electron-beam lithography combined with dry reactive ion etching to achieve both: patterning of 1-nm features and surface and volume plasmon engineering in Si. The nanofabrication technique employed here produces nanowires with a line edge roughness (LER) of 1 nm (3σ). In addition, this work demonstrates tuning of the Si volume plasmon energy by 1.2 eV from the bulk value, which is one order of magnitude higher than previous attempts of volume plasmon engineering using lithographic methods.},
doi = {10.1002/adfm.201903429},
journal = {Advanced Functional Materials},
number = [52],
volume = [29],
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 8, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Bulk and surface plasmons in solids
journal, May 1995

  • Quinn, J. J.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 96, Issue 3-4
  • DOI: 10.1016/0168-583X(95)00246-4

Optical absorption and emission of silicon nanocrystals: From single to collective response
journal, April 2013

  • Guerra, Roberto; Cigarini, Francesco; Ossicini, Stefano
  • Journal of Applied Physics, Vol. 113, Issue 14
  • DOI: 10.1063/1.4799394

Statistical- and image-noise effects on experimental spectrum of line-edge and line-width roughness
journal, October 2010

  • Nishida, Akio
  • Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 9, Issue 4
  • DOI: 10.1117/1.3504358

Discrete power spectrum of line width roughness
journal, October 2009

  • Hiraiwa, A.; Nishida, A.
  • Journal of Applied Physics, Vol. 106, Issue 7
  • DOI: 10.1063/1.3226883

Theoretical analysis of line-edge roughness using FFT techniques
conference, June 1999

  • Ohfuji, Takeshi; Endo, Masayuki; Morimoto, Hiroaki
  • Microlithography '99, SPIE Proceedings
  • DOI: 10.1117/12.350261

From active plasmonic devices to plasmonic molecular electronics
journal, October 2018

  • Lacroix, Jean‐Christophe; van Nguyen, Quynh; Ai, Yong
  • Polymer International, Vol. 68, Issue 4
  • DOI: 10.1002/pi.5756

Line shape of the volume plasmons of silicon and germanium
journal, April 1979


I n s i t u vaporization of very low molecular weight resists using 1/2 nm diameter electron beams
journal, November 1981

  • Isaacson, M.; Muray, A.
  • Journal of Vacuum Science and Technology, Vol. 19, Issue 4
  • DOI: 10.1116/1.571180

Approaching the Resolution Limit of Nanometer-Scale Electron Beam-Induced Deposition
journal, July 2005

  • van Dorp, Willem F.; van Someren, Bob; Hagen, Cornelis W.
  • Nano Letters, Vol. 5, Issue 7
  • DOI: 10.1021/nl050522i

A single-atom transistor
journal, February 2012

  • Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta
  • Nature Nanotechnology, Vol. 7, Issue 4
  • DOI: 10.1038/nnano.2012.21

About the influence of Line Edge Roughness on measured effective–CD
journal, January 2011

  • Bilski, Bartosz; Frenner, Karsten; Osten, Wolfgang
  • Optics Express, Vol. 19, Issue 21
  • DOI: 10.1364/OE.19.019967

Unbiased line width roughness measurements with critical dimension scanning electron microscopy and critical dimension atomic force microscopy
journal, April 2012

  • Azarnouche, L.; Pargon, E.; Menguelti, K.
  • Journal of Applied Physics, Vol. 111, Issue 8
  • DOI: 10.1063/1.4705509

Mechanistic Studies of Plasmon Chemistry on Metal Catalysts
journal, February 2019

  • Kazuma, Emiko; Kim, Yousoo
  • Angewandte Chemie International Edition, Vol. 58, Issue 15
  • DOI: 10.1002/anie.201811234

Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells
journal, January 2015

  • Rahman, Atikur; Ashraf, Ahsan; Xin, Huolin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms6963

Nanostructured metals for light-based technologies
journal, March 2019


Chemically Enhancing Block Copolymers for Block-Selective Synthesis of Self-Assembled Metal Oxide Nanostructures
journal, December 2012

  • Kamcev, Jovan; Germack, David S.; Nykypanchuk, Dmytro
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn304122b

Surface plasmons and breakdown in thin silicon dioxide films on silicon
journal, August 1998

  • Kim, Jong-Hyun; Sanchez, Julian J.; DeMassa, Thomas A.
  • Journal of Applied Physics, Vol. 84, Issue 3
  • DOI: 10.1063/1.368178

Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene
journal, July 2018

  • Stanford, Michael G.; Rack, Philip D.; Jariwala, Deep
  • npj 2D Materials and Applications, Vol. 2, Issue 1
  • DOI: 10.1038/s41699-018-0065-3

Optical properties of nanostructured materials: a review
journal, January 2011


Intrinsic parameter fluctuations in decananometer mosfets introduced by gate line edge roughness
journal, May 2003

  • Asenov, A.; Kaya, S.; Brown, A. R.
  • IEEE Transactions on Electron Devices, Vol. 50, Issue 5
  • DOI: 10.1109/TED.2003.813457

Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy
journal, December 2017


Large-Area Metal Gaps and Their Optical Applications
journal, August 2018

  • Bahk, Young-Mi; Kim, Dai-Sik; Park, Hyeong-Ryeol
  • Advanced Optical Materials, Vol. 7, Issue 1
  • DOI: 10.1002/adom.201800426

Ab initio energy loss spectra of Si and Ge nanowires
journal, January 2015

  • Palummo, Maurizia; Hogan, Conor; Ossicini, Stefano
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 43
  • DOI: 10.1039/C5CP05074J

Low-Magnetic-Field Regime of a Gate-Defined Constriction in High-Mobility Graphene
journal, January 2019


Aberration-Corrected Electron Beam Lithography at the One Nanometer Length Scale
journal, April 2017


Determination of line edge roughness in low-dose top-down scanning electron microscopy images
journal, July 2014

  • Verduin, Thomas; Kruit, Pieter; Hagen, Cornelis W.
  • Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol. 13, Issue 3
  • DOI: 10.1117/1.JMM.13.3.033009

High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays
journal, November 2014

  • Hobbs, Richard G.; Yang, Yujia; Fallahi, Arya
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn504594g

Atomic precision lithography on Si
journal, January 2009

  • Randall, J. N.; Lyding, J. W.; Schmucker, S.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 27, Issue 6
  • DOI: 10.1116/1.3237096

Systematic errors in the measurement of power spectral density
journal, July 2013


From Si Nanowires to Porous Silicon: The Role of Excitonic Effects
journal, January 2007


Nonlocal effects in the plasmons of nanowires and nanocavities excited by fast electron beams
journal, July 2008


Resolution Limits of Electron-Beam Lithography toward the Atomic Scale
journal, March 2013

  • Manfrinato, Vitor R.; Zhang, Lihua; Su, Dong
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl304715p

Atom-by-Atom Construction of a Cyclic Artificial Molecule in Silicon
journal, November 2018


High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures
journal, June 2016


Using high-contrast salty development of hydrogen silsesquioxane for sub-10-nm half-pitch lithography
journal, January 2007

  • Yang, Joel K. W.; Berggren, Karl K.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, Issue 6
  • DOI: 10.1116/1.2801881