skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on August 1, 2020

Title: A deep learning enabler for nonintrusive reduced order modeling of fluid flows

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [3]
  1. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
  2. Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7465 Trondheim, Norway
  3. School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma 73019, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1545970
Grant/Contract Number:  
SC0019290
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physics of Fluids
Additional Journal Information:
Journal Name: Physics of Fluids Journal Volume: 31 Journal Issue: 8; Journal ID: ISSN 1070-6631
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Pawar, S., Rahman, S. M., Vaddireddy, H., San, O., Rasheed, A., and Vedula, P. A deep learning enabler for nonintrusive reduced order modeling of fluid flows. United States: N. p., 2019. Web. doi:10.1063/1.5113494.
Pawar, S., Rahman, S. M., Vaddireddy, H., San, O., Rasheed, A., & Vedula, P. A deep learning enabler for nonintrusive reduced order modeling of fluid flows. United States. doi:10.1063/1.5113494.
Pawar, S., Rahman, S. M., Vaddireddy, H., San, O., Rasheed, A., and Vedula, P. Thu . "A deep learning enabler for nonintrusive reduced order modeling of fluid flows". United States. doi:10.1063/1.5113494.
@article{osti_1545970,
title = {A deep learning enabler for nonintrusive reduced order modeling of fluid flows},
author = {Pawar, S. and Rahman, S. M. and Vaddireddy, H. and San, O. and Rasheed, A. and Vedula, P.},
abstractNote = {},
doi = {10.1063/1.5113494},
journal = {Physics of Fluids},
number = 8,
volume = 31,
place = {United States},
year = {2019},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 1, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Fourth-order finite difference simulation of a differentially heated cavity
journal, January 2002

  • Johnston, Hans; Krasny, Robert
  • International Journal for Numerical Methods in Fluids, Vol. 40, Issue 8
  • DOI: 10.1002/fld.389

Cooperative catalysis and chemical chaos: a chemical model for the Lorenz equations
journal, May 1993



journal, March 2007


Goal-oriented, model-constrained optimization for reduction of large-scale systems
journal, June 2007


The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
journal, January 1993


Data-driven operator inference for nonintrusive projection-based model reduction
journal, July 2016

  • Peherstorfer, Benjamin; Willcox, Karen
  • Computer Methods in Applied Mechanics and Engineering, Vol. 306
  • DOI: 10.1016/j.cma.2016.03.025

Solution to inverse heat conduction problems employing singular value decomposition and model-reduction
journal, January 2002


Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model
journal, April 2018

  • Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah
  • Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 28, Issue 4
  • DOI: 10.1063/1.5028373

Interpolation among reduced-order matrices to obtain parameterized models for design, optimization and probabilistic analysis
journal, January 2009

  • Degroote, Joris; Vierendeels, Jan; Willcox, Karen
  • International Journal for Numerical Methods in Fluids
  • DOI: 10.1002/fld.2089

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
journal, February 2019


Generalized phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake
journal, November 2013

  • Bourgeois, J. A.; Noack, B. R.; Martinuzzi, R. J.
  • Journal of Fluid Mechanics, Vol. 736
  • DOI: 10.1017/jfm.2013.494

Data-Driven Identification of Parametric Partial Differential Equations
journal, January 2019

  • Rudy, Samuel; Alla, Alessandro; Brunton, Steven L.
  • SIAM Journal on Applied Dynamical Systems, Vol. 18, Issue 2
  • DOI: 10.1137/18m1191944

Large-eddy simulation: A critical review of the technique
journal, January 1994

  • Mason, Pj
  • Quarterly Journal of the Royal Meteorological Society, Vol. 120, Issue 515
  • DOI: 10.1256/smsqj.51501

An improved algorithm for the shallow water equations model reduction: Dynamic Mode Decomposition vs POD: AN IMPROVED ALGORITHM FOR DYNAMIC MODE DECOMPOSITION VS POD
journal, April 2015

  • Bistrian, D. A.; Navon, I. M.
  • International Journal for Numerical Methods in Fluids, Vol. 78, Issue 9
  • DOI: 10.1002/fld.4029

Model Reduction for Flow Analysis and Control
journal, January 2017


Greedy Nonintrusive Reduced Order Model for Fluid Dynamics
journal, December 2018

  • Chen, Wang; Hesthaven, Jan S.; Junqiang, Bai
  • AIAA Journal, Vol. 56, Issue 12
  • DOI: 10.2514/1.j056161

A Dual-Weighted Approach to Order Reduction in 4DVAR Data Assimilation
journal, March 2008


Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models
journal, August 2008


Low-order models for the flow in a differentially heated cavity
journal, November 2001

  • Podvin, Bérengère; Le Quéré, Patrick
  • Physics of Fluids, Vol. 13, Issue 11
  • DOI: 10.1063/1.1408919

Modal Analysis of Fluid Flows: An Overview
journal, December 2017

  • Taira, Kunihiko; Brunton, Steven L.; Dawson, Scott T. M.
  • AIAA Journal, Vol. 55, Issue 12
  • DOI: 10.2514/1.j056060

Advances in large eddy simulation methodology for complex flows
journal, October 2002


Reduced Order Modeling for Time-Dependent Optimization Problems with Initial Value Controls
journal, January 2018

  • Heinkenschloss, Matthias; Jando, Dörte
  • SIAM Journal on Scientific Computing, Vol. 40, Issue 1
  • DOI: 10.1137/16m1109084

Spectral proper orthogonal decomposition
journal, March 2016

  • Sieber, Moritz; Paschereit, C. Oliver; Oberleithner, Kilian
  • Journal of Fluid Mechanics, Vol. 792
  • DOI: 10.1017/jfm.2016.103

Optimal snapshot location for computing POD basis functions
journal, February 2010

  • Kunisch, Karl; Volkwein, Stefan
  • ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 44, Issue 3
  • DOI: 10.1051/m2an/2010011

Multi-scale proper orthogonal decomposition of complex fluid flows
journal, May 2019

  • Mendez, M. A.; Balabane, M.; Buchlin, J. -M.
  • Journal of Fluid Mechanics, Vol. 870
  • DOI: 10.1017/jfm.2019.212

Nonlinear Model Reduction via Discrete Empirical Interpolation
journal, January 2010

  • Chaturantabut, Saifon; Sorensen, Danny C.
  • SIAM Journal on Scientific Computing, Vol. 32, Issue 5
  • DOI: 10.1137/090766498

A multiscale method for model order reduction in PDE parameter estimation
journal, April 2019


A domain decomposition non-intrusive reduced order model for turbulent flows
journal, March 2019


On the Relation between Energy-Conserving Low-Order Models and a System of Coupled Generalized Volterra Gyrostats with Nonlinear Feedback
journal, November 2007


Explicit Model Predictive Control for Large-Scale Systems via Model Reduction
journal, July 2008

  • Hovland, Svein; Gravdahl, Jan Tommy; Willcox, Karen E.
  • Journal of Guidance, Control, and Dynamics, Vol. 31, Issue 4
  • DOI: 10.2514/1.33079

Study of High–Reynolds Number Isotropic Turbulence by Direct Numerical Simulation
journal, January 2009


Extreme learning machine for reduced order modeling of turbulent geophysical flows
journal, April 2018


On the relation between energy conserving low-order models and Hamiltonian systems
journal, December 2009

  • Wang, Yunheng; Lakshmivarahan, S.
  • Nonlinear Analysis: Theory, Methods & Applications, Vol. 71, Issue 12
  • DOI: 10.1016/j.na.2008.11.059

Principal interval decomposition framework for POD reduced-order modeling of convective Boussinesq flows: PRINCIPAL INTERVAL DECOMPOSITION MODEL REDUCTION FRAMEWORK
journal, February 2015

  • San, O.; Borggaard, J.
  • International Journal for Numerical Methods in Fluids, Vol. 78, Issue 1
  • DOI: 10.1002/fld.4006

On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body
journal, April 2014

  • Östh, Jan; Noack, Bernd R.; Krajnović, Siniša
  • Journal of Fluid Mechanics, Vol. 747
  • DOI: 10.1017/jfm.2014.168

Finite-Volume High-Fidelity Simulation Combined with Finite-Element-Based Reduced-Order Modeling of Incompressible Flow Problems
journal, April 2019

  • Siddiqui, M.; Fonn, Eivind; Kvamsdal, Trond
  • Energies, Vol. 12, Issue 7
  • DOI: 10.3390/en12071271

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
journal, October 2016

  • Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
  • Journal of Fluid Mechanics, Vol. 807
  • DOI: 10.1017/jfm.2016.615

A reduced-order approach for optimal control of fluids using proper orthogonal decomposition
journal, January 2000


Data driven governing equations approximation using deep neural networks
journal, October 2019


Deep learning algorithm for data-driven simulation of noisy dynamical system
journal, January 2019


POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
journal, August 2015


A method for interpolating on manifolds structural dynamics reduced-order models
journal, November 2009

  • Amsallem, David; Cortial, Julien; Carlberg, Kevin
  • International Journal for Numerical Methods in Engineering, Vol. 80, Issue 9
  • DOI: 10.1002/nme.2681

Model reduction for compressible flows using POD and Galerkin projection
journal, February 2004

  • Rowley, Clarence W.; Colonius, Tim; Murray, Richard M.
  • Physica D: Nonlinear Phenomena, Vol. 189, Issue 1-2
  • DOI: 10.1016/j.physd.2003.03.001

An eigensystem realization algorithm for modal parameter identification and model reduction
journal, September 1985

  • Juang, Jer-Nan; Pappa, Richard S.
  • Journal of Guidance, Control, and Dynamics, Vol. 8, Issue 5
  • DOI: 10.2514/3.20031

A dynamic subgrid-scale modeling framework for Boussinesq turbulence
journal, May 2017


An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
journal, November 2005


Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis
journal, May 2018

  • Towne, Aaron; Schmidt, Oliver T.; Colonius, Tim
  • Journal of Fluid Mechanics, Vol. 847
  • DOI: 10.1017/jfm.2018.283

Non-intrusive reduced order modeling of nonlinear problems using neural networks
journal, June 2018


Turbulence and the dynamics of coherent structures. I. Coherent structures
journal, January 1987

  • Sirovich, Lawrence
  • Quarterly of Applied Mathematics, Vol. 45, Issue 3
  • DOI: 10.1090/qam/910462

Parametric free-form shape design with PDE models and reduced basis method
journal, April 2010

  • Lassila, Toni; Rozza, Gianluigi
  • Computer Methods in Applied Mechanics and Engineering, Vol. 199, Issue 23-24
  • DOI: 10.1016/j.cma.2010.01.007

A computational study of Rayleigh–Bénard convection. Part 1. Rayleigh-number scaling
journal, January 1991


Extreme learning machine: Theory and applications
journal, December 2006


Nodes, Modes and Flow Codes
journal, March 1993

  • Karniadakis, George Em; Orszag, Steven A.
  • Physics Today, Vol. 46, Issue 3
  • DOI: 10.1063/1.881374

On long-term boundedness of Galerkin models
journal, January 2015


A Reduced-Order Method for Simulation and Control of Fluid Flows
journal, July 1998


Artificial viscosity proper orthogonal decomposition
journal, January 2011

  • Borggaard, Jeff; Iliescu, Traian; Wang, Zhu
  • Mathematical and Computer Modelling, Vol. 53, Issue 1-2
  • DOI: 10.1016/j.mcm.2010.08.015

On the stability and extension of reduced-order Galerkin models in incompressible flows: A numerical study of vortex shedding
journal, June 2009

  • Akhtar, Imran; Nayfeh, Ali H.; Ribbens, Calvin J.
  • Theoretical and Computational Fluid Dynamics, Vol. 23, Issue 3
  • DOI: 10.1007/s00162-009-0112-y

Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
journal, May 2018

  • Vlachas, Pantelis R.; Byeon, Wonmin; Wan, Zhong Y.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 474, Issue 2213
  • DOI: 10.1098/rspa.2017.0844

Certified Reduced Basis Methods for Parametrized Elliptic Optimal Control Problems with Distributed Controls
journal, August 2017

  • Kärcher, Mark; Tokoutsi, Zoi; Grepl, Martin A.
  • Journal of Scientific Computing, Vol. 75, Issue 1
  • DOI: 10.1007/s10915-017-0539-z

Identification strategies for model-based control
journal, July 2013


Recursive dynamic mode decomposition of transient and post-transient wake flows
journal, November 2016

  • Noack, Bernd R.; Stankiewicz, Witold; Morzyński, Marek
  • Journal of Fluid Mechanics, Vol. 809
  • DOI: 10.1017/jfm.2016.678

Practical error bounds for a non-intrusive bi-fidelity approach to parametric/stochastic model reduction
journal, September 2018

  • Hampton, Jerrad; Fairbanks, Hillary R.; Narayan, Akil
  • Journal of Computational Physics, Vol. 368
  • DOI: 10.1016/j.jcp.2018.04.015

Machine learning closures for model order reduction of thermal fluids
journal, August 2018


A low-cost, goal-oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems
journal, December 2010

  • Carlberg, Kevin; Farhat, Charbel
  • International Journal for Numerical Methods in Engineering, Vol. 86, Issue 3
  • DOI: 10.1002/nme.3074

On Low-Dimensional Galerkin Models for Fluid Flow
journal, June 2000


An artificial neural network framework for reduced order modeling of transient flows
journal, October 2019

  • San, Omer; Maulik, Romit; Ahmed, Mansoor
  • Communications in Nonlinear Science and Numerical Simulation, Vol. 77
  • DOI: 10.1016/j.cnsns.2019.04.025

Digital Twin in Industry: State-of-the-Art
journal, April 2019

  • Tao, Fei; Zhang, He; Liu, Ang
  • IEEE Transactions on Industrial Informatics, Vol. 15, Issue 4
  • DOI: 10.1109/tii.2018.2873186

Principal component analysis: a review and recent developments
journal, April 2016

  • Jolliffe, Ian T.; Cadima, Jorge
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, Issue 2065
  • DOI: 10.1098/rsta.2015.0202

Sparse reduced-order modelling: sensor-based dynamics to full-state estimation
journal, April 2018

  • Loiseau, Jean-Christophe; Noack, Bernd R.; Brunton, Steven L.
  • Journal of Fluid Mechanics, Vol. 844
  • DOI: 10.1017/jfm.2018.147

A computational study of Rayleigh–Bénard convection. Part 2. Dimension considerations
journal, January 1991


Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem
journal, May 2019


Adaptive reduced basis method for the reconstruction of unsteady vortex-dominated flows
journal, August 2019


Randomized dynamic mode decomposition for nonintrusive reduced order modelling: RANDOMIZED DYNAMIC MODE DECOMPOSITION FOR NIROM
journal, February 2017

  • Bistrian, Diana Alina; Navon, Ionel Michael
  • International Journal for Numerical Methods in Engineering, Vol. 112, Issue 1
  • DOI: 10.1002/nme.5499

On the structure of the energy conserving low-order models and their relation to Volterra gyrostat
journal, September 2008


A reduced-order approach to four-dimensional variational data assimilation using proper orthogonal decomposition
journal, January 2007

  • Cao, Yanhua; Zhu, Jiang; Navon, I. M.
  • International Journal for Numerical Methods in Fluids, Vol. 53, Issue 10
  • DOI: 10.1002/fld.1365

A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems
journal, January 2015

  • Benner, Peter; Gugercin, Serkan; Willcox, Karen
  • SIAM Review, Vol. 57, Issue 4
  • DOI: 10.1137/130932715

Stable Galerkin reduced order models for linearized compressible flow
journal, April 2009

  • Barone, Matthew F.; Kalashnikova, Irina; Segalman, Daniel J.
  • Journal of Computational Physics, Vol. 228, Issue 6
  • DOI: 10.1016/j.jcp.2008.11.015

Searching for turbulence models by artificial neural network
journal, May 2017


Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison
journal, September 2012

  • Wang, Zhu; Akhtar, Imran; Borggaard, Jeff
  • Computer Methods in Applied Mechanics and Engineering, Vol. 237-240
  • DOI: 10.1016/j.cma.2012.04.015

Scale-Invariance and Turbulence Models for Large-Eddy Simulation
journal, January 2000


Neural network closures for nonlinear model order reduction
journal, January 2018


Stable architectures for deep neural networks
journal, December 2017


The differentially heated cavity
journal, October 1994


Closed-Loop Turbulence Control: Progress and Challenges
journal, August 2015

  • Brunton, Steven L.; Noack, Bernd R.
  • Applied Mechanics Reviews, Vol. 67, Issue 5
  • DOI: 10.1115/1.4031175

Exascale computing and big data
journal, June 2015

  • Reed, Daniel A.; Dongarra, Jack
  • Communications of the ACM, Vol. 58, Issue 7
  • DOI: 10.1145/2699414

A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures
journal, May 2013

  • Mignolet, Marc P.; Przekop, Adam; Rizzi, Stephen A.
  • Journal of Sound and Vibration, Vol. 332, Issue 10
  • DOI: 10.1016/j.jsv.2012.10.017

Nonintrusive reduced-order modeling of parametrized time-dependent partial differential equations
journal, February 2013

  • Audouze, Christophe; De Vuyst, Florian; Nair, Prasanth B.
  • Numerical Methods for Partial Differential Equations, Vol. 29, Issue 5
  • DOI: 10.1002/num.21768

Discovering governing equations from data by sparse identification of nonlinear dynamical systems
journal, March 2016

  • Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 15
  • DOI: 10.1073/pnas.1517384113

From snapshots to modal expansions – bridging low residuals and pure frequencies
journal, August 2016


Neural Network Modeling for Near Wall Turbulent Flow
journal, October 2002

  • Milano, Michele; Koumoutsakos, Petros
  • Journal of Computational Physics, Vol. 182, Issue 1
  • DOI: 10.1006/jcph.2002.7146

Reduced-order modeling: new approaches for computational physics
journal, February 2004


Dynamic mode decomposition for large and streaming datasets
journal, November 2014

  • Hemati, Maziar S.; Williams, Matthew O.; Rowley, Clarence W.
  • Physics of Fluids, Vol. 26, Issue 11
  • DOI: 10.1063/1.4901016

Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations
journal, October 2010

  • Carlberg, Kevin; Bou-Mosleh, Charbel; Farhat, Charbel
  • International Journal for Numerical Methods in Engineering, Vol. 86, Issue 2
  • DOI: 10.1002/nme.3050

Sparsity-promoting dynamic mode decomposition
journal, February 2014

  • Jovanović, Mihailo R.; Schmid, Peter J.; Nichols, Joseph W.
  • Physics of Fluids, Vol. 26, Issue 2
  • DOI: 10.1063/1.4863670

An intrinsic stabilization scheme for proper orthogonal decomposition based low-dimensional models
journal, May 2007

  • Kalb, Virginia L.; Deane, Anil E.
  • Physics of Fluids, Vol. 19, Issue 5
  • DOI: 10.1063/1.2723149

The Shifted Proper Orthogonal Decomposition: A Mode Decomposition for Multiple Transport Phenomena
journal, January 2018

  • Reiss, J.; Schulze, P.; Sesterhenn, J.
  • SIAM Journal on Scientific Computing, Vol. 40, Issue 3
  • DOI: 10.1137/17m1140571

Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses
journal, April 2012

  • Chen, Kevin K.; Tu, Jonathan H.; Rowley, Clarence W.
  • Journal of Nonlinear Science, Vol. 22, Issue 6, p. 887-915
  • DOI: 10.1007/s00332-012-9130-9

Enablers for robust POD models
journal, February 2009

  • Bergmann, M.; Bruneau, C. -H.; Iollo, A.
  • Journal of Computational Physics, Vol. 228, Issue 2
  • DOI: 10.1016/j.jcp.2008.09.024

On linear and nonlinear aspects of dynamic mode decomposition: Linear and Nonlinear Aspects of Dynamic Mode Decomposition
journal, February 2016

  • Alekseev, A. K.; Bistrian, D. A.; Bondarev, A. E.
  • International Journal for Numerical Methods in Fluids, Vol. 82, Issue 6
  • DOI: 10.1002/fld.4221

Stability Properties of POD-Galerkin Approximations for the Compressible Navier-Stokes Equations
journal, March 2000

  • Iollo, A.; Lanteri, S.; Désidéri, J. -A.
  • Theoretical and Computational Fluid Dynamics, Vol. 13, Issue 6
  • DOI: 10.1007/s001620050119

Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems
journal, January 2010

  • Lieberman, Chad; Willcox, Karen; Ghattas, Omar
  • SIAM Journal on Scientific Computing, Vol. 32, Issue 5
  • DOI: 10.1137/090775622

Nonlinear Model Order Reduction via Dynamic Mode Decomposition
journal, January 2017

  • Alla, Alessandro; Kutz, J. Nathan
  • SIAM Journal on Scientific Computing, Vol. 39, Issue 5
  • DOI: 10.1137/16m1059308

Discovering dynamic patterns from infectious disease data using dynamic mode decomposition
journal, February 2015