skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on July 30, 2020

Title: Machine‐learning‐based predictive control of nonlinear processes. Part II: Computational implementation

Authors:
 [1];  [1];  [1]; ORCiD logo [2]
  1. Department of Chemical and Biomolecular EngineeringUniversity of California Los Angeles California
  2. Department of Chemical and Biomolecular EngineeringUniversity of California Los Angeles California, Department of Electrical and Computer EngineeringUniversity of California Los Angeles California
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1545905
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
AIChE Journal
Additional Journal Information:
Journal Name: AIChE Journal Journal Volume: 65 Journal Issue: 11; Journal ID: ISSN 0001-1541
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
United States
Language:
English

Citation Formats

Wu, Zhe, Tran, Anh, Rincon, David, and Christofides, Panagiotis D. Machine‐learning‐based predictive control of nonlinear processes. Part II: Computational implementation. United States: N. p., 2019. Web. doi:10.1002/aic.16734.
Wu, Zhe, Tran, Anh, Rincon, David, & Christofides, Panagiotis D. Machine‐learning‐based predictive control of nonlinear processes. Part II: Computational implementation. United States. doi:10.1002/aic.16734.
Wu, Zhe, Tran, Anh, Rincon, David, and Christofides, Panagiotis D. Wed . "Machine‐learning‐based predictive control of nonlinear processes. Part II: Computational implementation". United States. doi:10.1002/aic.16734.
@article{osti_1545905,
title = {Machine‐learning‐based predictive control of nonlinear processes. Part II: Computational implementation},
author = {Wu, Zhe and Tran, Anh and Rincon, David and Christofides, Panagiotis D.},
abstractNote = {},
doi = {10.1002/aic.16734},
journal = {AIChE Journal},
number = 11,
volume = 65,
place = {United States},
year = {2019},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 30, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
journal, March 2010

  • Prakash, J.; Patwardhan, Sachin C.; Shah, Sirish L.
  • Industrial & Engineering Chemistry Research, Vol. 49, Issue 5
  • DOI: 10.1021/ie900197s

The Ensemble Kalman Filter: theoretical formulation and practical implementation
journal, November 2003


Economic model predictive control of nonlinear process systems using empirical models
journal, November 2014

  • Alanqar, Anas; Ellis, Matthew; Christofides, Panagiotis D.
  • AIChE Journal, Vol. 61, Issue 3
  • DOI: 10.1002/aic.14683

David Draper and E. I. George, and a rejoinder by the authors
journal, November 1999

  • Volinsky, Chris T.; Raftery, Adrian E.; Madigan, David
  • Statistical Science, Vol. 14, Issue 4
  • DOI: 10.1214/ss/1009212519

Parallel distributed computing using Python
journal, September 2011


The ensemble Kalman filter for combined state and parameter estimation
journal, June 2009


A universal formula for stabilization with bounded controls
journal, June 1991


Data Driven Economic Model Predictive Control
journal, April 2018


Model Predictive Control of Unknown Nonlinear Dynamical Systems Based on Recurrent Neural Networks
journal, August 2012


An Ensemble Kalman Filter for Systems Governed by Differential Algebraic Equations (DAEs)
journal, January 2012


On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
journal, April 2005


A framework for parallel and distributed training of neural networks
journal, July 2017