skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 16, 2020

Title: Aperture‐Synthesis Radar Imaging With Compressive Sensing for Ionospheric Research

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Earth and Atmospheric SciencesCornell University Ithaca NY USA
  2. Electrical and Computer EngineeringCornell University Ithaca NY USA
  3. Leibniz Institute for Atmospheric Physics Kuehlungsborn Germany
  4. Jicamarca Radio Observatory Lima Peru
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1545904
Grant/Contract Number:  
AR0000946
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Radio Science
Additional Journal Information:
Journal Name: Radio Science Journal Volume: 54 Journal Issue: 6; Journal ID: ISSN 0048-6604
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English

Citation Formats

Hysell, D. L., Sharma, P., Urco, M., and Milla, M. A. Aperture‐Synthesis Radar Imaging With Compressive Sensing for Ionospheric Research. United States: N. p., 2019. Web. doi:10.1029/2019RS006805.
Hysell, D. L., Sharma, P., Urco, M., & Milla, M. A. Aperture‐Synthesis Radar Imaging With Compressive Sensing for Ionospheric Research. United States. doi:10.1029/2019RS006805.
Hysell, D. L., Sharma, P., Urco, M., and Milla, M. A. Mon . "Aperture‐Synthesis Radar Imaging With Compressive Sensing for Ionospheric Research". United States. doi:10.1029/2019RS006805.
@article{osti_1545904,
title = {Aperture‐Synthesis Radar Imaging With Compressive Sensing for Ionospheric Research},
author = {Hysell, D. L. and Sharma, P. and Urco, M. and Milla, M. A.},
abstractNote = {},
doi = {10.1029/2019RS006805},
journal = {Radio Science},
number = 6,
volume = 54,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 16, 2020
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
journal, January 2006

  • Candes, Emmanuel J.; Tao, Terence
  • IEEE Transactions on Information Theory, Vol. 52, Issue 12, p. 5406-5425
  • DOI: 10.1109/TIT.2006.885507

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information
journal, February 2006

  • Candes, E.J.; Romberg, J.; Tao, T.
  • IEEE Transactions on Information Theory, Vol. 52, Issue 2, p. 489-509
  • DOI: 10.1109/TIT.2005.862083