skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanostructured polymer films with metal-like thermal conductivity

Abstract

Due to their unique properties, polymers – typically thermal insulators – can open up opportunities for advanced thermal management when they are transformed into thermal conductors. Recent studies have shown polymers can achieve high thermal conductivity, but the transport mechanisms have yet to be elucidated. Here we report polyethylene films with a high thermal conductivity of 62 Wm–1 K–1, over two orders-of-magnitude greater than that of typical polymers (~0.1 Wm–1 K–1) and exceeding that of many metals and ceramics. Structural studies and thermal modeling reveal that the film consists of nanofibers with crystalline and amorphous regions, and the amorphous region has a remarkably high thermal conductivity, over ~16 Wm–1 K–1. This work lays the foundation for rational design and synthesis of thermally conductive polymers for thermal management, particularly when flexible, lightweight, chemically inert, and electrically insulating thermal conductors are required.

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [5];  [5];  [6];  [5];  [7];  [8];  [9]; ORCiD logo [5]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Massachusetts, Amherst, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Modern Electron, Bothell, WA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peking Univ., Beijing (China)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  6. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Advanced Cooling Technologies, Inc., Lancaster, PA (United States)
  7. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. of Houston, Houston, TX (United States)
  8. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Chandler, AZ (United States)
  9. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Huazhong Univ. of Science and Technology, Hubei (China)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (EE-5A); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1545628
Alternate Identifier(s):
OSTI ID: 1594087
Grant/Contract Number:  
FG02-02ER45977; EE0005756; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 10; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Xu, Yanfei, Kraemer, Daniel, Song, Bai, Jiang, Zhang, Zhou, Jiawei, Loomis, James, Wang, Jianjian, Li, Mingda, Ghasemi, Hadi, Huang, Xiaopeng, Li, Xiaobo, and Chen, Gang. Nanostructured polymer films with metal-like thermal conductivity. United States: N. p., 2019. Web. doi:10.1038/s41467-019-09697-7.
Xu, Yanfei, Kraemer, Daniel, Song, Bai, Jiang, Zhang, Zhou, Jiawei, Loomis, James, Wang, Jianjian, Li, Mingda, Ghasemi, Hadi, Huang, Xiaopeng, Li, Xiaobo, & Chen, Gang. Nanostructured polymer films with metal-like thermal conductivity. United States. doi:10.1038/s41467-019-09697-7.
Xu, Yanfei, Kraemer, Daniel, Song, Bai, Jiang, Zhang, Zhou, Jiawei, Loomis, James, Wang, Jianjian, Li, Mingda, Ghasemi, Hadi, Huang, Xiaopeng, Li, Xiaobo, and Chen, Gang. Tue . "Nanostructured polymer films with metal-like thermal conductivity". United States. doi:10.1038/s41467-019-09697-7. https://www.osti.gov/servlets/purl/1545628.
@article{osti_1545628,
title = {Nanostructured polymer films with metal-like thermal conductivity},
author = {Xu, Yanfei and Kraemer, Daniel and Song, Bai and Jiang, Zhang and Zhou, Jiawei and Loomis, James and Wang, Jianjian and Li, Mingda and Ghasemi, Hadi and Huang, Xiaopeng and Li, Xiaobo and Chen, Gang},
abstractNote = {Due to their unique properties, polymers – typically thermal insulators – can open up opportunities for advanced thermal management when they are transformed into thermal conductors. Recent studies have shown polymers can achieve high thermal conductivity, but the transport mechanisms have yet to be elucidated. Here we report polyethylene films with a high thermal conductivity of 62 Wm–1 K–1, over two orders-of-magnitude greater than that of typical polymers (~0.1 Wm–1 K–1) and exceeding that of many metals and ceramics. Structural studies and thermal modeling reveal that the film consists of nanofibers with crystalline and amorphous regions, and the amorphous region has a remarkably high thermal conductivity, over ~16 Wm–1 K–1. This work lays the foundation for rational design and synthesis of thermally conductive polymers for thermal management, particularly when flexible, lightweight, chemically inert, and electrically insulating thermal conductors are required.},
doi = {10.1038/s41467-019-09697-7},
journal = {Nature Communications},
number = 1,
volume = 10,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Single-Polymer Dynamics in Steady Shear Flow
journal, March 1999


Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring
journal, July 2017


High thermal conductivity of chain-oriented amorphous polythiophene
journal, March 2014

  • Singh, Virendra; Bougher, Thomas L.; Weathers, Annie
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.44

Impact of molecular orientation on thermal conduction in spin-coated polyimide films
journal, August 1999

  • Kurabayashi, K.; Goodson, K. E.
  • Journal of Applied Physics, Vol. 86, Issue 4
  • DOI: 10.1063/1.370989

Thermal properties of graphene and nanostructured carbon materials
journal, August 2011

  • Balandin, Alexander A.
  • Nature Materials, Vol. 10, Issue 8, p. 569-581
  • DOI: 10.1038/nmat3064

Pursuing prosthetic electronic skin
journal, July 2016

  • Chortos, Alex; Liu, Jia; Bao, Zhenan
  • Nature Materials, Vol. 15, Issue 9
  • DOI: 10.1038/nmat4671

Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)
journal, July 2001


Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
journal, November 2008

  • Schmidt, Aaron J.; Chen, Xiaoyuan; Chen, Gang
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3006335

Thermal conductivity of gel-spun polyethylene fibers
journal, March 1993

  • Choy, C. L.; Fei, Y.; Xi, T. G.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 31, Issue 3
  • DOI: 10.1002/polb.1993.090310315

Thermal conductivity of polymer-based composites: Fundamentals and applications
journal, August 2016


A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy
journal, February 2014

  • Kraemer, D.; Chen, G.
  • Review of Scientific Instruments, Vol. 85, Issue 2
  • DOI: 10.1063/1.4865111

Polyethylene nanofibres with very high thermal conductivities
journal, March 2010

  • Shen, Sheng; Henry, Asegun; Tong, Jonathan
  • Nature Nanotechnology, Vol. 5, Issue 4
  • DOI: 10.1038/nnano.2010.27

Radiative human body cooling by nanoporous polyethylene textile
journal, September 2016


The plastics revolution: how chemists are pushing polymers to new limits
journal, August 2016


Design, fabrication and control of soft robots
journal, May 2015


Phonon coupling and transport in individual polyethylene chains: a comparison study with the bulk crystal
journal, January 2017

  • Wang, Xinjiang; Kaviany, Massoud; Huang, Baoling
  • Nanoscale, Vol. 9, Issue 45
  • DOI: 10.1039/C7NR06216H

Drawing and extrusion of semi-crystalline polymers
journal, May 1987


Thermal Conductivity of High-Modulus Polymer Fibers
journal, June 2013

  • Wang, Xiaojia; Ho, Victor; Segalman, Rachel A.
  • Macromolecules, Vol. 46, Issue 12, p. 4937-4943
  • DOI: 10.1021/ma400612y

Transient thermoreflectance from thin metal films
journal, July 1986

  • Paddock, Carolyn A.; Eesley, Gary L.
  • Journal of Applied Physics, Vol. 60, Issue 1, p. 285-290
  • DOI: 10.1063/1.337642

Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers
journal, September 1997

  • Fujishiro, Hiroyuki; Ikebe, Manabu; Kashima, Toshihiro
  • Japanese Journal of Applied Physics, Vol. 36, Issue Part 1, No. 9A
  • DOI: 10.1143/JJAP.36.5633

Continuous fabrication platform for highly aligned polymer films
journal, September 2014


Orientational order determination in liquid crystals by x-ray diffraction
journal, December 1991


Nanoscale thermal transport
journal, January 2003

  • Cahill, David G.; Ford, Wayne K.; Goodson, Kenneth E.
  • Journal of Applied Physics, Vol. 93, Issue 2, p. 793-818
  • DOI: 10.1063/1.1524305