skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Symmetry control of nanorod superlattice driven by a governing force

Abstract

Nanoparticle self-assembly promises scalable fabrication of composite materials with unique properties, but symmetry control of assembled structures remains a challenge. By introducing a governing force in the assembly process, we develop a strategy to control assembly symmetry. As a demonstration, we realize the tetragonal superlattice of octagonal gold nanorods, breaking through the only hexagonal symmetry of the superlattice so far. Surprisingly, such sparse tetragonal superstructure exhibits much higher thermostability than its close-packed hexagonal counterpart. Multiscale modeling reveals that the governing force arises from hierarchical molecular and colloidal interactions. This force dominates the interactions involved in the assembly process and determines the superlattice symmetry, leading to the tetragonal superlattice that becomes energetically favorable over its hexagonal counterpart.This strategy might be instructive for designing assembly of various nanoparticles and may open up a new avenue for realizing diverse assembly structures with pre-engineered properties.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [5];  [3];  [5];  [5]; ORCiD logo [6];  [7]
  1. Chinese Academy of Sciences (CAS), Beijing (China). Key Lab. of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center For Nanoscience and Technology; Univ. of Maryland, College Park, MD (United States). Dept. of Chemical and Biomolecular Engineering
  2. Chinese Academy of Sciences (CAS), Beijing (China). Key Lab. of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center For Nanoscience and Technology; Univ. of Colorado, Boulder, CO (United States). Dept. of Physics and Soft Materials Research Center; Beihang Univ., Beijing (China). Dept. of Physics
  3. Chinese Academy of Sciences (CAS), Beijing (China). Key Lab. of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center For Nanoscience and Technology
  4. Southern Univ. of Science and Technology, Shanzhen (China). Dept. of Materials
  5. CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing (China). CAS Key Lab. of Standardization and Measurement for Nanotechnology
  6. Univ. of Colorado, Boulder, CO (United States). Dept. of Physics and Soft Materials Research Center
  7. Chinese Academy of Sciences (CAS), Beijing (China). Key Lab. of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center For Nanoscience and Technology; Nankai Univ., Tianjin (China). The MOE Key Lab. of Weak-Light Nonlinear Photonics and TEDA Applied Physics Inst. and School of Physics
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1545372
Grant/Contract Number:  
SC0010305
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English

Citation Formats

Liang, Yujia, Xie, Yong, Chen, Dongxue, Guo, Chuanfei, Hou, Shuai, Wen, Tao, Yang, Fengyou, Deng, Ke, Wu, Xiaochun, Smalyukh, Ivan I., and Liu, Qian. Symmetry control of nanorod superlattice driven by a governing force. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01111-4.
Liang, Yujia, Xie, Yong, Chen, Dongxue, Guo, Chuanfei, Hou, Shuai, Wen, Tao, Yang, Fengyou, Deng, Ke, Wu, Xiaochun, Smalyukh, Ivan I., & Liu, Qian. Symmetry control of nanorod superlattice driven by a governing force. United States. doi:10.1038/s41467-017-01111-4.
Liang, Yujia, Xie, Yong, Chen, Dongxue, Guo, Chuanfei, Hou, Shuai, Wen, Tao, Yang, Fengyou, Deng, Ke, Wu, Xiaochun, Smalyukh, Ivan I., and Liu, Qian. Fri . "Symmetry control of nanorod superlattice driven by a governing force". United States. doi:10.1038/s41467-017-01111-4. https://www.osti.gov/servlets/purl/1545372.
@article{osti_1545372,
title = {Symmetry control of nanorod superlattice driven by a governing force},
author = {Liang, Yujia and Xie, Yong and Chen, Dongxue and Guo, Chuanfei and Hou, Shuai and Wen, Tao and Yang, Fengyou and Deng, Ke and Wu, Xiaochun and Smalyukh, Ivan I. and Liu, Qian},
abstractNote = {Nanoparticle self-assembly promises scalable fabrication of composite materials with unique properties, but symmetry control of assembled structures remains a challenge. By introducing a governing force in the assembly process, we develop a strategy to control assembly symmetry. As a demonstration, we realize the tetragonal superlattice of octagonal gold nanorods, breaking through the only hexagonal symmetry of the superlattice so far. Surprisingly, such sparse tetragonal superstructure exhibits much higher thermostability than its close-packed hexagonal counterpart. Multiscale modeling reveals that the governing force arises from hierarchical molecular and colloidal interactions. This force dominates the interactions involved in the assembly process and determines the superlattice symmetry, leading to the tetragonal superlattice that becomes energetically favorable over its hexagonal counterpart.This strategy might be instructive for designing assembly of various nanoparticles and may open up a new avenue for realizing diverse assembly structures with pre-engineered properties.},
doi = {10.1038/s41467-017-01111-4},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building devices from colloidal quantum dots
journal, August 2016


Programmable self-assembly
journal, December 2014

  • Cademartiri, Ludovico; Bishop, Kyle J. M.
  • Nature Materials, Vol. 14, Issue 1
  • DOI: 10.1038/nmat4184

Feedback-driven self-assembly of symmetry-breaking optical metamaterials in solution
journal, November 2014


Five-dimensional optical recording mediated by surface plasmons in gold nanorods
journal, May 2009

  • Zijlstra, Peter; Chon, James W. M.; Gu, Min
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08053

Self-assembled nanoparticle arrays for multiphase trace analyte detection
journal, November 2012

  • Cecchini, Michael P.; Turek, Vladimir A.; Paget, Jack
  • Nature Materials, Vol. 12, Issue 2
  • DOI: 10.1038/nmat3488

Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions
journal, May 2011

  • Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 20
  • DOI: 10.1073/pnas.1016530108

Subwavelength colour imaging with a metallic nanolens
journal, June 2008


Self-assembly of magnetite nanocubes into helical superstructures
journal, July 2014


The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres
journal, June 2010

  • Bardosova, Maria; Pemble, Martyn E.; Povey, Ian M.
  • Advanced Materials, Vol. 22, Issue 29
  • DOI: 10.1002/adma.200903708

Stress-Induced Nanoparticle Crystallization
journal, May 2014

  • Wu, Huimeng; Wang, Zhongwu; Fan, Hongyou
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja503320s

Constructing Two-Dimensional Nanoparticle Arrays on Layered Materials Inspired by Atomic Epitaxial Growth
journal, February 2015

  • Lin, Hai-Xin; Chen, Liang; Liu, De-Yu
  • Journal of the American Chemical Society, Vol. 137, Issue 8
  • DOI: 10.1021/ja5128538

Non-Close-Packed Artificial Opals
journal, August 2003


Stepwise Evolution of DNA-Programmable Nanoparticle Superlattices
journal, May 2013

  • Senesi, Andrew J.; Eichelsdoerfer, Daniel J.; Macfarlane, Robert J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 26
  • DOI: 10.1002/anie.201301936

Hierarchical organization of chiral rafts in colloidal membranes
journal, September 2014

  • Sharma, Prerna; Ward, Andrew; Gibaud, T.
  • Nature, Vol. 513, Issue 7516
  • DOI: 10.1038/nature13694

Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions
journal, March 2016


Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization
journal, May 2015

  • O’Brien, Matthew N.; Jones, Matthew R.; Lee, Byeongdu
  • Nature Materials, Vol. 14, Issue 8
  • DOI: 10.1038/nmat4293

Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles
journal, July 2012

  • Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming
  • Nature Nanotechnology, Vol. 7, Issue 7
  • DOI: 10.1038/nnano.2012.106

Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
journal, November 2011

  • Henzie, Joel; Grünwald, Michael; Widmer-Cooper, Asaph
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3178

Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces
journal, January 2012

  • Young, K. L.; Jones, M. R.; Zhang, J.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 7
  • DOI: 10.1073/pnas.1119301109

Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics
journal, January 2016

  • Gwo, Shangjr; Chen, Hung-Ying; Lin, Meng-Hsien
  • Chemical Society Reviews, Vol. 45, Issue 20
  • DOI: 10.1039/C6CS00450D

Nonadditivity of nanoparticle interactions
journal, October 2015


Parallel Collective Resonances in Arrays of Gold Nanorods
journal, March 2014

  • Vitrey, Alan; Aigouy, Lionel; Prieto, Patricia
  • Nano Letters, Vol. 14, Issue 4
  • DOI: 10.1021/nl500238h

Gold nanorods and their plasmonic properties
journal, January 2013

  • Chen, Huanjun; Shao, Lei; Li, Qian
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35367A

Chemical-Bonding-Directed Hierarchical Assembly of Nanoribbon-Shaped Nanocomposites of Gold Nanorods and Poly(3-hexylthiophene)
journal, May 2016

  • Pan, Shuang; He, Luze; Peng, Juan
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201603189

Functional Gold Nanorods: Synthesis, Self-Assembly, and Sensing Applications
journal, June 2012

  • Vigderman, Leonid; Khanal, Bishnu P.; Zubarev, Eugene R.
  • Advanced Materials, Vol. 24, Issue 36
  • DOI: 10.1002/adma.201201690

Self-assembly of colloidal one-dimensional nanocrystals
journal, January 2014

  • Zhang, Shuang-Yuan; Regulacio, Michelle D.; Han, Ming-Yong
  • Chemical Society Reviews, Vol. 43, Issue 7
  • DOI: 10.1039/c3cs60397k

Correlating Superlattice Polymorphs to Internanoparticle Distance, Packing Density, and Surface Lattice in Assemblies of PbS Nanoparticles
journal, February 2013

  • Wang, Zhongwu; Schliehe, Constanze; Bian, Kaifu
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl400084k

Complex Crystal Structures Formed by the Self-Assembly of Ditethered Nanospheres
journal, March 2009

  • Iacovella, Christopher R.; Glotzer, Sharon C.
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl900051u

Three-Dimensional Self-Assembling of Gold Nanorods with Controlled Macroscopic Shape and Local Smectic B Order
journal, April 2012

  • Hamon, Cyrille; Postic, Marie; Mazari, Elsa
  • ACS Nano, Vol. 6, Issue 5
  • DOI: 10.1021/nn3006027

Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays
journal, January 2016


Crystallographic facets and shapes of gold nanorods of different aspect ratios
journal, October 1999


Atomic-scale determination of surface facets in gold nanorods
journal, October 2012

  • Goris, Bart; Bals, Sara; Van den Broek, Wouter
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3462

Multivalency of PEG-thiol ligands affects the stability of NIR-absorbing hollow gold nanospheres and gold nanorods
journal, January 2016

  • Ruff, J.; Steitz, J.; Buchkremer, A.
  • Journal of Materials Chemistry B, Vol. 4, Issue 16
  • DOI: 10.1039/C6TB00674D

DFT Vibrational Calculations of Rhodamine 6G Adsorbed on Silver:  Analysis of Tip-Enhanced Raman Spectroscopy
journal, March 2005

  • Watanabe, Hiroyuki; Hayazawa, Norihiko; Inouye, Yasushi
  • The Journal of Physical Chemistry B, Vol. 109, Issue 11
  • DOI: 10.1021/jp045771u

Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method
journal, May 2003

  • Nikoobakht, Babak; El-Sayed, Mostafa A.
  • Chemistry of Materials, Vol. 15, Issue 10
  • DOI: 10.1021/cm020732l

Seed-Mediated Synthesis of Gold Nanorods:  Role of the Size and Nature of the Seed
journal, September 2004

  • Gole, Anand; Murphy, Catherine J.
  • Chemistry of Materials, Vol. 16, Issue 19
  • DOI: 10.1021/cm0492336

Quantitation of Metal Content in the Silver-Assisted Growth of Gold Nanorods
journal, March 2006

  • Orendorff, Christopher J.; Murphy, Catherine J.
  • The Journal of Physical Chemistry B, Vol. 110, Issue 9
  • DOI: 10.1021/jp0570972

Capillary flow as the cause of ring stains from dried liquid drops
journal, October 1997

  • Deegan, Robert D.; Bakajin, Olgica; Dupont, Todd F.
  • Nature, Vol. 389, Issue 6653, p. 827-829
  • DOI: 10.1038/39827

Controllable Two-Stage Droplet Evaporation Method and Its Nanoparticle Self-Assembly Mechanism
journal, May 2013

  • Xie, Yong; Guo, Shengming; Guo, Chuanfei
  • Langmuir, Vol. 29, Issue 21
  • DOI: 10.1021/la400736b

Surface-enhanced Raman scattering from rhodamine 6G on gold-coated self-organized silicon nanopyramidal array
journal, December 2013

  • Li, Rui; Li, Hong; Pan, Shi
  • Journal of Materials Research, Vol. 28, Issue 24
  • DOI: 10.1557/jmr.2013.352

Effect of gold nanoparticles on the optical properties of Rhodamine 6G
journal, May 2016


Studies on interdependent optical properties of Rhodamine 6G dye and gold nanoparticles at different dilutions of aqueous solutions
journal, November 2014


Charge-dependent adsorption of rhodamine 6G on gold nanoparticle surfaces: fluorescence and Raman study
journal, February 2011

  • Ganbold, Erdene-Ochir; Park, Jin-Ho; Dembereldorj, Uuriintuya
  • Journal of Raman Spectroscopy, Vol. 42, Issue 8
  • DOI: 10.1002/jrs.2907

Spectroscopic studies of liquid solutions of R6G laser dye and Ag nanoparticle aggregates
journal, January 2005

  • Noginov, M. A.; Vondrova, M.; Williams, S. M.
  • Journal of Optics A: Pure and Applied Optics, Vol. 7, Issue 2
  • DOI: 10.1088/1464-4258/7/2/029