skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The 2.4 μ m Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results

Abstract

The Widefield Infrared Survey Explorer (WISE) satellite surveyed the entire sky multiple times in four infrared wavelengths (3.4, 4.6, 12, and 22 μm). The unprecedented combination of coverage area and depth gives us the opportunity to measure the luminosity function (LF) of galaxies, one of the fundamental quantities in the study of them, at 2.4 μm to an unparalleled level of formal statistical accuracy in the near-infrared. The big advantage of measuring LFs at wavelengths in the window of ≈2–3.5 μm is that it correlates more closely to the total stellar mass in galaxies than others. In this paper we report on the parameters of the 2.4 μm LF of galaxies obtained from applying the spectro-luminosity-functional-based methods to datasets from the previous papers in this series using the mean and covariance of 2.4 μm normalized spectral energy distributions (SEDs) from our previous work. In terms of the single Schechter function parameters evaluated at the present epoch, the combined result is: $${\phi }_{\star }=5.8\,\pm [{0.3}_{\mathrm{stat}},{0.4}_{\mathrm{sys}}]\times {10}^{-3}\,{\mathrm{Mpc}}^{-3}$$, $${L}_{\star }=6.4\pm [{0.1}_{\mathrm{stat}},{0.3}_{\mathrm{sys}}]\times {10}^{10}\,{L}_{2.4\mu {\rm{m}}\odot }$$ (M$$_{\star}$$ = -21.67 ± [0.02stat, 0.05sys] AB mag), and $α$ = -1.050 ± [0.004stat, 0.04sys]. The high statistical accuracy comes from combining public redshift surveys with the wide coverage from WISE, and the unevenness in statistical accuracy is a result of our efforts to work around biases of uncertain origin that affect resolved and marginally resolved galaxies. With further refinements, the techniques applied in this work promise to advance the study of the SED of the universe.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
  2. Univ. Diego Portales, Santiago (Chile)
  3. Univ. of Cape Town, Cape Town (Republic of South Africa)
  4. NorthWest Research Associates, Redmond, WA (United States)
  5. Univ. of California, Davis, CA (United States)
  6. California Inst. of Technology (CalTech), La Canada Flintridge, CA (United States). Jet Propulsion Lab.
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1545273
Grant/Contract Number:  
AC52-07NA27344; NAS5-26555; NNX13AC07G
Resource Type:
Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 866; Journal Issue: 1; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; galaxies: evolution; galaxies: luminosity function, mass function; galaxies: statistics

Citation Formats

Lake, S. E., Wright, E. L., Assef, R. J., Jarrett, T. H., Petty, S., Stanford, S. A., Stern, D., and Tsai, C. -W. The 2.4 μ m Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results. United States: N. p., 2018. Web. doi:10.3847/1538-4357/aadd47.
Lake, S. E., Wright, E. L., Assef, R. J., Jarrett, T. H., Petty, S., Stanford, S. A., Stern, D., & Tsai, C. -W. The 2.4 μ m Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results. United States. doi:10.3847/1538-4357/aadd47.
Lake, S. E., Wright, E. L., Assef, R. J., Jarrett, T. H., Petty, S., Stanford, S. A., Stern, D., and Tsai, C. -W. Wed . "The 2.4 μ m Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results". United States. doi:10.3847/1538-4357/aadd47. https://www.osti.gov/servlets/purl/1545273.
@article{osti_1545273,
title = {The 2.4 μ m Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results},
author = {Lake, S. E. and Wright, E. L. and Assef, R. J. and Jarrett, T. H. and Petty, S. and Stanford, S. A. and Stern, D. and Tsai, C. -W.},
abstractNote = {The Widefield Infrared Survey Explorer (WISE) satellite surveyed the entire sky multiple times in four infrared wavelengths (3.4, 4.6, 12, and 22 μm). The unprecedented combination of coverage area and depth gives us the opportunity to measure the luminosity function (LF) of galaxies, one of the fundamental quantities in the study of them, at 2.4 μm to an unparalleled level of formal statistical accuracy in the near-infrared. The big advantage of measuring LFs at wavelengths in the window of ≈2–3.5 μm is that it correlates more closely to the total stellar mass in galaxies than others. In this paper we report on the parameters of the 2.4 μm LF of galaxies obtained from applying the spectro-luminosity-functional-based methods to datasets from the previous papers in this series using the mean and covariance of 2.4 μm normalized spectral energy distributions (SEDs) from our previous work. In terms of the single Schechter function parameters evaluated at the present epoch, the combined result is: ${\phi }_{\star }=5.8\,\pm [{0.3}_{\mathrm{stat}},{0.4}_{\mathrm{sys}}]\times {10}^{-3}\,{\mathrm{Mpc}}^{-3}$, ${L}_{\star }=6.4\pm [{0.1}_{\mathrm{stat}},{0.3}_{\mathrm{sys}}]\times {10}^{10}\,{L}_{2.4\mu {\rm{m}}\odot }$ (M$_{\star}$ = -21.67 ± [0.02stat, 0.05sys] AB mag), and $α$ = -1.050 ± [0.004stat, 0.04sys]. The high statistical accuracy comes from combining public redshift surveys with the wide coverage from WISE, and the unevenness in statistical accuracy is a result of our efforts to work around biases of uncertain origin that affect resolved and marginally resolved galaxies. With further refinements, the techniques applied in this work promise to advance the study of the SED of the universe.},
doi = {10.3847/1538-4357/aadd47},
journal = {The Astrophysical Journal (Online)},
number = 1,
volume = 866,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Table 1 Table 1: Noise Models Used for Parametric Fits and Completeness

Save / Share:

Works referenced in this record:

The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1
journal, September 2007


On the simultaneous analysis of several complete samples - The V/Vmax and Ve/Va variables, with applications to quasars
journal, February 1980

  • Avni, Y.; Bahcall, J. N.
  • The Astrophysical Journal, Vol. 235
  • DOI: 10.1086/157673

Luminosity functions for galaxies and quasars in the Spitzer Wide-area Infrared Extragalactic Legacy Survey: Luminosity functions in SWIRE
journal, June 2006

  • Babbedge, T. S. R.; Rowan-Robinson, M.; Vaccari, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 370, Issue 3
  • DOI: 10.1111/j.1365-2966.2006.10547.x

The Optical and Near‐Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions
journal, December 2003

  • Bell, Eric F.; McIntosh, Daniel H.; Katz, Neal
  • The Astrophysical Journal Supplement Series, Vol. 149, Issue 2
  • DOI: 10.1086/378847

The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1
journal, August 2003

  • Blanton, Michael R.; Hogg, David W.; Bahcall, Neta A.
  • The Astrophysical Journal, Vol. 592, Issue 2
  • DOI: 10.1086/375776

Stellar population synthesis at the resolution of 2003
journal, October 2003


The relationship between infrared, optical, and ultraviolet extinction
journal, October 1989

  • Cardelli, Jason A.; Clayton, Geoffrey C.; Mathis, John S.
  • The Astrophysical Journal, Vol. 345
  • DOI: 10.1086/167900

The evolution of the near-infrared galaxy luminosity function and colour bimodality up to z ≃ 2 from the UKIDSS Ultra Deep Survey Early Data Release
journal, August 2007


The Galaxy Optical Luminosity Function from the agn and Galaxy Evolution Survey
journal, February 2012

  • Cool, Richard J.; Eisenstein, Daniel J.; Kochanek, Christopher S.
  • The Astrophysical Journal, Vol. 748, Issue 1
  • DOI: 10.1088/0004-637X/748/1/10

Mid-Infrared Galaxy Luminosity Functions from the agn and Galaxy Evolution Survey
journal, May 2009


Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release: GAMA
journal, March 2011


Quantifying cosmic variance: Cosmic variance
journal, September 2010


Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample
journal, November 2001

  • Eisenstein, Daniel J.; Annis, James; Gunn, James E.
  • The Astronomical Journal, Vol. 122, Issue 5
  • DOI: 10.1086/323717

emcee : The MCMC Hammer
journal, March 2013

  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925
  • DOI: 10.1086/670067

Ensemble samplers with affine invariance
journal, January 2010

  • Goodman, Jonathan; Weare, Jonathan
  • Communications in Applied Mathematics and Computational Science, Vol. 5, Issue 1
  • DOI: 10.2140/camcos.2010.5.65

A Map of the Universe
journal, May 2005

  • Gott III, J. Richard; Jurić, Mario; Schlegel, David
  • The Astrophysical Journal, Vol. 624, Issue 2
  • DOI: 10.1086/428890

NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS
journal, September 2013

  • Hinshaw, G.; Larson, D.; Komatsu, E.
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 2
  • DOI: 10.1088/0067-0049/208/2/19

THE SPITZER - WISE SURVEY OF THE ECLIPTIC POLES
journal, June 2011


Near-infrared and optical luminosity functions from the 6dF Galaxy Survey
journal, May 2006

  • Jones, D. Heath; Peterson, Bruce A.; Colless, Matthew
  • Monthly Notices of the Royal Astronomical Society, Vol. 369, Issue 1
  • DOI: 10.1111/j.1365-2966.2006.10291.x

Galaxy And Mass Assembly (GAMA): ugrizYJHK Sérsic luminosity functions and the cosmic spectral energy distribution by Hubble type
journal, February 2014

  • Kelvin, Lee S.; Driver, Simon P.; Robotham, Aaron S. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 439, Issue 2
  • DOI: 10.1093/mnras/stt2391

Ages: the agn and Galaxy Evolution Survey
journal, May 2012

  • Kochanek, C. S.; Eisenstein, D. J.; Cool, R. J.
  • The Astrophysical Journal Supplement Series, Vol. 200, Issue 1
  • DOI: 10.1088/0067-0049/200/1/8

The K ‐Band Galaxy Luminosity Function
journal, October 2001

  • Kochanek, C. S.; Pahre, M. A.; Falco, E. E.
  • The Astrophysical Journal, Vol. 560, Issue 2
  • DOI: 10.1086/322488

K-Corrections: an Examination of Their Contribution to the Uncertainty of Luminosity Measurements
journal, October 2016


OPTICAL SPECTROSCOPIC SURVEY OF HIGH-LATITUDE WISE -SELECTED SOURCES
journal, December 2011


The 2.4 μ m Galaxy Luminosity Function As Measured Using WISE . I. Measurement Techniques
journal, March 2017


The CNOC2 Field Galaxy Luminosity Function. I. A Description of Luminosity Function Evolution
journal, June 1999

  • Lin, Huan; Yee, H. K. C.; Carlberg, R. G.
  • The Astrophysical Journal, Vol. 518, Issue 2
  • DOI: 10.1086/307297

The K-band luminosity function of nearby field galaxies
journal, March 2000


Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions: GAMA luminosity functions
journal, December 2011


Galaxy and Mass Assembly (GAMA): maximum-likelihood determination of the luminosity function and its evolution
journal, June 2015

  • Loveday, J.; Norberg, P.; Baldry, I. K.
  • Monthly Notices of the Royal Astronomical Society, Vol. 451, Issue 2
  • DOI: 10.1093/mnras/stv1013

Cosmic Star-Formation History
journal, August 2014


Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies
journal, September 2005


Soft X-ray AGN luminosity function from ROSAT surveys: II. Table of the binned soft X-ray luminosity function
journal, April 2001


The SDSS DR6 luminosity functions of galaxies
journal, November 2009


The Deep2 Galaxy Redshift Survey: Design, Observations, data Reduction, and Redshifts
journal, August 2013

  • Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc
  • The Astrophysical Journal Supplement Series, Vol. 208, Issue 1
  • DOI: 10.1088/0067-0049/208/1/5

The K20 survey. V. The evolution of the near-IR Luminosity Function
journal, April 2003


Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample
journal, June 2002

  • Richards, Gordon T.; Fan, Xiaohui; Newberg, Heidi Jo
  • The Astronomical Journal, Vol. 123, Issue 6
  • DOI: 10.1086/340187

The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3
journal, June 2006

  • Richards, Gordon T.; Strauss, Michael A.; Fan, Xiaohui
  • The Astronomical Journal, Vol. 131, Issue 6
  • DOI: 10.1086/503559

An analytic expression for the luminosity function for galaxies.
journal, January 1976

  • Schechter, P.
  • The Astrophysical Journal, Vol. 203
  • DOI: 10.1086/154079

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds
journal, June 1998

  • Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc
  • The Astrophysical Journal, Vol. 500, Issue 2
  • DOI: 10.1086/305772

Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources
journal, January 1968

  • Schmidt, Maarten
  • The Astrophysical Journal, Vol. 151
  • DOI: 10.1086/149446

AN EMPIRICAL DETERMINATION OF THE INTERGALACTIC BACKGROUND LIGHT USING NEAR-INFRARED DEEP GALAXY SURVEY DATA OUT TO 5 μm AND THE GAMMA-RAY OPACITY OF THE UNIVERSE
journal, March 2014


Luminosity and surface brightness distribution of K -band galaxies from the UKIDSS Large Area Survey
journal, August 2009

  • Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 397, Issue 2
  • DOI: 10.1111/j.1365-2966.2009.14987.x

The Wide-Field Infrared Survey Explorer (Wise): Mission Description and Initial On-Orbit Performance
journal, November 2010


    Works referencing / citing this record:

    The Contribution of Galaxies to the 3.4 μ m Cosmic Infrared Background as Measured Using WISE
    journal, December 2019