DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications

Abstract

Treatment of InP colloidal quantum dots (QDs) with hydrofluoric acid (HF) has been an effective method to improve their photoluminescence quantum yield (PLQY) without growing a shell. Previous work has shown that this can occur through the dissolution of the fluorinated phosphorus and subsequent passivation of indium on the reconstructed surface by excess ligands. In this article, we demonstrate that very significant luminescence enhancements occur at lower HF exposure though a different mechanism. At lower exposure to HF, the main role of the fluoride ions is to directly passivate the surface indium dangling bonds in the form of atomic ligands. The PLQY enhancement in this case is accompanied by red shifts of the emission and absorption peaks rather than blue shifts caused by etching as seen at higher exposures. Density functional theory shows that the surface fluorination is thermodynamically preferred and that the observed spectral characteristics might be due to greater exciton delocalization over the outermost surface layer of the InP QDs as well as alteration of the optical oscillator strength by the highly electronegative fluoride layer. Passivation of surface indium with fluorides can be applied to other indium-based QDs. PLQY of InAs QDs could also be increased by anmore » order of magnitude via fluorination. We fabricated fluorinated InAs QD-based electrical devices exhibiting improved switching and higher mobility than those of 1,2-ethanedithiol cross-linked QD devices. The effective surface passivation eliminates persistent photoconductivity usually found in InAs QD-based solid films.« less

Authors:
 [1];  [2]; ORCiD logo [3];  [4];  [2];  [5]; ORCiD logo [6]
  1. Samsung Advanced Institute of Technology, Suwon (Korea); Univ. of California, Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technion-Israel Inst. of Technology, Haifa (Israel)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Samsung Advanced Inst. of Technology, Suwon (Korea)
  6. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kavli Energy NanoScience Inst., Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1545143
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 12; Journal Issue: 11; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; indium phosphide; quantum dots; fluorine; etching; atomic ligand; indium arsenide

Citation Formats

Kim, Tae -Gon, Zherebetskyy, Danylo, Bekenstein, Yehonadav, Oh, Myoung Hwan, Wang, Lin -Wang, Jang, Eunjoo, and Alivisatos, A. Paul. Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. United States: N. p., 2018. Web. doi:10.1021/acsnano.8b06692.
Kim, Tae -Gon, Zherebetskyy, Danylo, Bekenstein, Yehonadav, Oh, Myoung Hwan, Wang, Lin -Wang, Jang, Eunjoo, & Alivisatos, A. Paul. Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications. United States. https://doi.org/10.1021/acsnano.8b06692
Kim, Tae -Gon, Zherebetskyy, Danylo, Bekenstein, Yehonadav, Oh, Myoung Hwan, Wang, Lin -Wang, Jang, Eunjoo, and Alivisatos, A. Paul. Tue . "Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications". United States. https://doi.org/10.1021/acsnano.8b06692. https://www.osti.gov/servlets/purl/1545143.
@article{osti_1545143,
title = {Trap Passivation in Indium-Based Quantum Dots through Surface Fluorination: Mechanism and Applications},
author = {Kim, Tae -Gon and Zherebetskyy, Danylo and Bekenstein, Yehonadav and Oh, Myoung Hwan and Wang, Lin -Wang and Jang, Eunjoo and Alivisatos, A. Paul},
abstractNote = {Treatment of InP colloidal quantum dots (QDs) with hydrofluoric acid (HF) has been an effective method to improve their photoluminescence quantum yield (PLQY) without growing a shell. Previous work has shown that this can occur through the dissolution of the fluorinated phosphorus and subsequent passivation of indium on the reconstructed surface by excess ligands. In this article, we demonstrate that very significant luminescence enhancements occur at lower HF exposure though a different mechanism. At lower exposure to HF, the main role of the fluoride ions is to directly passivate the surface indium dangling bonds in the form of atomic ligands. The PLQY enhancement in this case is accompanied by red shifts of the emission and absorption peaks rather than blue shifts caused by etching as seen at higher exposures. Density functional theory shows that the surface fluorination is thermodynamically preferred and that the observed spectral characteristics might be due to greater exciton delocalization over the outermost surface layer of the InP QDs as well as alteration of the optical oscillator strength by the highly electronegative fluoride layer. Passivation of surface indium with fluorides can be applied to other indium-based QDs. PLQY of InAs QDs could also be increased by an order of magnitude via fluorination. We fabricated fluorinated InAs QD-based electrical devices exhibiting improved switching and higher mobility than those of 1,2-ethanedithiol cross-linked QD devices. The effective surface passivation eliminates persistent photoconductivity usually found in InAs QD-based solid films.},
doi = {10.1021/acsnano.8b06692},
journal = {ACS Nano},
number = 11,
volume = 12,
place = {United States},
year = {Tue Oct 16 00:00:00 EDT 2018},
month = {Tue Oct 16 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 68 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (a) Optical absorption and (b) photoluminescence (PL) spectra of pristine InP QDs (black), HF-treated InP QDs (orange), and HF-treated InP QDs after 1-month aging at room temperature (red) normalized by the optical density at 450 nm as an excitation wavelength. Absorption peak positions and relative PL intensities ofmore » HF-treated InP QDs as functions of (c) distilled water concentrations (0, 0.4, 1, 2, 4, and 10 vol %) at [HF]/[QD] = 1000 and (d) [HF]/[QD] = 0, 10, 100, 1000, and 10000 without adding water. Red solid circle and vacant diamond in (c) indicate the absorption peak position and the relative PL intensity before the HF treatment, respectively.« less

Save / Share:

Works referenced in this record:

The surface science of nanocrystals
journal, January 2016

  • Boles, Michael A.; Ling, Daishun; Hyeon, Taeghwan
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4526

Tolerance of Intrinsic Defects in PbS Quantum Dots
journal, November 2015

  • Zherebetskyy, Danylo; Zhang, Yingjie; Salmeron, Miquel
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 23
  • DOI: 10.1021/acs.jpclett.5b02202

Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications
journal, January 2010

  • Talapin, Dmitri V.; Lee, Jong-Soo; Kovalenko, Maksym V.
  • Chemical Reviews, Vol. 110, Issue 1
  • DOI: 10.1021/cr900137k

All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation
journal, September 2012


Air-stable n-type colloidal quantum dot solids
journal, June 2014

  • Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun
  • Nature Materials, Vol. 13, Issue 8
  • DOI: 10.1038/nmat4007

Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid
journal, May 2014


Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine
journal, November 2012

  • Bae, Wan Ki; Joo, Jin; Padilha, Lazaro A.
  • Journal of the American Chemical Society, Vol. 134, Issue 49
  • DOI: 10.1021/ja309783v

Ultrastable PbSe Nanocrystal Quantum Dots via in Situ Formation of Atomically Thin Halide Adlayers on PbSe(100)
journal, June 2014

  • Woo, Ju Young; Ko, Jae-Hyeon; Song, Jung Hoon
  • Journal of the American Chemical Society, Vol. 136, Issue 25
  • DOI: 10.1021/ja503957r

Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
journal, September 1993

  • Murray, C. B.; Norris, D. J.; Bawendi, M. G.
  • Journal of the American Chemical Society, Vol. 115, Issue 19, p. 8706-8715
  • DOI: 10.1021/ja00072a025

Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility
journal, July 1997

  • Peng, Xiaogang; Schlamp, Michael C.; Kadavanich, Andreas V.
  • Journal of the American Chemical Society, Vol. 119, Issue 30, p. 7019-7029
  • DOI: 10.1021/ja970754m

Luminescent Solar Concentration with Semiconductor Nanorods and Transfer-Printed Micro-Silicon Solar Cells
journal, December 2013

  • Bronstein, Noah D.; Li, Lanfang; Xu, Lu
  • ACS Nano, Vol. 8, Issue 1
  • DOI: 10.1021/nn404418h

White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights
journal, May 2010


Electroluminescence from single monolayers of nanocrystals in molecular organic devices
journal, December 2002

  • Coe, Seth; Woo, Wing-Keung; Bawendi, Moungi
  • Nature, Vol. 420, Issue 6917
  • DOI: 10.1038/nature01217

Semiconductor Nanocrystals as Fluorescent Biological Labels
patent, September 1998


Quantum dot field effect transistors
journal, September 2013


Nonmonotonic Size Dependence in the Hole Mobility of Methoxide-Stabilized PbSe Quantum Dot Solids
journal, July 2013

  • Scheele, Marcus; Engel, Jesse H.; Ferry, Vivian E.
  • ACS Nano, Vol. 7, Issue 8
  • DOI: 10.1021/nn401657n

PbSe Quantum Dot Field-Effect Transistors with Air-Stable Electron Mobilities above 7 cm 2 V –1 s –1
journal, March 2013

  • Liu, Yao; Tolentino, Jason; Gibbs, Markelle
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl304753n

Designing High-Performance PbS and PbSe Nanocrystal Electronic Devices through Stepwise, Post-Synthesis, Colloidal Atomic Layer Deposition
journal, February 2014

  • Oh, Soong Ju; Berry, Nathaniel E.; Choi, Ji-Hyuk
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl404818z

Exploiting the colloidal nanocrystal library to construct electronic devices
journal, April 2016


Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors
journal, November 2008

  • Clifford, Jason P.; Konstantatos, Gerasimos; Johnston, Keith W.
  • Nature Nanotechnology, Vol. 4, Issue 1
  • DOI: 10.1038/nnano.2008.313

Improved performance and stability in quantum dot solar cells through band alignment engineering
journal, May 2014

  • Chuang, Chia-Hao M.; Brown, Patrick R.; Bulović, Vladimir
  • Nature Materials, Vol. 13, Issue 8, p. 796-801
  • DOI: 10.1038/nmat3984

Mobile Surface Traps in CdSe Nanocrystals with Carboxylic Acid Ligands
journal, July 2011

  • Voznyy, Oleksandr
  • The Journal of Physical Chemistry C, Vol. 115, Issue 32
  • DOI: 10.1021/jp205784g

Impact of Stoichiometry on the Electronic Structure of PbS Quantum Dots
journal, May 2013


Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials
journal, July 2016


One-pot Synthesis of Highly Luminescent InP/ZnS Nanocrystals without Precursor Injection
journal, September 2008

  • Li, Liang; Reiss, Peter
  • Journal of the American Chemical Society, Vol. 130, Issue 35
  • DOI: 10.1021/ja803687e

Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots
journal, September 2013

  • Lim, Jaehoon; Park, Myeongjin; Bae, Wan Ki
  • ACS Nano, Vol. 7, Issue 10
  • DOI: 10.1021/nn403594j

Interface Modifications of InAs Quantum-Dots Solids and their Effects on FET Performance
journal, March 2010

  • Soreni-Harari, Michal; Mocatta, David; Zimin, Marina
  • Advanced Functional Materials, Vol. 20, Issue 6
  • DOI: 10.1002/adfm.200902149

Control of the Carrier Type in InAs Nanocrystal Films by Predeposition Incorporation of Cd
journal, December 2010

  • Geyer, Scott M.; Allen, Peter M.; Chang, Liang-Yi
  • ACS Nano, Vol. 4, Issue 12
  • DOI: 10.1021/nn101772n

Surface Chemistry of InP Quantum Dots: A Comprehensive Study
journal, December 2010

  • Cros-Gagneux, Arnaud; Delpech, Fabien; Nayral, Céline
  • Journal of the American Chemical Society, Vol. 132, Issue 51
  • DOI: 10.1021/ja104673y

InP/ZnS Nanocrystals: Coupling NMR and XPS for Fine Surface and Interface Description
journal, November 2012

  • Virieux, Héloïse; Le Troedec, Marianne; Cros-Gagneux, Arnaud
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja307124m

Chemistry of InP Nanocrystal Syntheses
journal, April 2016


Highly efficient band‐edge emission from InP quantum dots
journal, May 1996

  • Mićić, Olga I.; Sprague, Julian; Lu, Zhenghao
  • Applied Physics Letters, Vol. 68, Issue 22
  • DOI: 10.1063/1.115807

Etching of Colloidal InP Nanocrystals with Fluorides:  Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency
journal, December 2002

  • Talapin, Dmitri V.; Gaponik, Nikolai; Borchert, Holger
  • The Journal of Physical Chemistry B, Vol. 106, Issue 49
  • DOI: 10.1021/jp026380n

Photoemission study of size selected InP nanocrystals: the relationship between luminescence yield and surface structure
journal, June 2003

  • Adam, S.; McGinley, C.; M�ller, T.
  • The European Physical Journal D - Atomic, Molecular and Optical Physics, Vol. 24, Issue 1-3
  • DOI: 10.1140/epjd/e2003-00162-1

The effect of nanocrystal surface structure on the luminescence properties: Photoemission study of HF-etched InP nanocrystals
journal, August 2005

  • Adam, S.; Talapin, D. V.; Borchert, H.
  • The Journal of Chemical Physics, Vol. 123, Issue 8
  • DOI: 10.1063/1.2004901

Increase of the Photoluminescence Intensity of InP Nanowires by Photoassisted Surface Passivation
journal, September 2005

  • van Vugt, Lambert K.; Veen, Sandra J.; Bakkers, Erik P. A. M.
  • Journal of the American Chemical Society, Vol. 127, Issue 35
  • DOI: 10.1021/ja051860o

Electrostatic Stabilized InP Colloidal Quantum Dots with High Photoluminescence Efficiency
journal, June 2015


Spectroscopic Properties of Colloidal Indium Phosphide Quantum Wires
journal, November 2007

  • Wang, Fudong; Yu, Heng; Li, Jingbo
  • Journal of the American Chemical Society, Vol. 129, Issue 46
  • DOI: 10.1021/ja074049h

Solvothermal synthesis of InP quantum dots and their enhanced luminescent efficiency by post-synthetic treatments
journal, March 2011

  • Byun, Ho-June; Lee, Ju Chul; Yang, Heesun
  • Journal of Colloid and Interface Science, Vol. 355, Issue 1
  • DOI: 10.1016/j.jcis.2010.12.013

Hybrid passivated colloidal quantum dot solids
journal, July 2012

  • Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.127

In-Gap States in Electronic Structure of Nonpolar Surfaces of Insulating Metal Oxides
journal, May 2014

  • Zherebetskyy, Danylo; Wang, Lin-Wang
  • Advanced Materials Interfaces, Vol. 1, Issue 8
  • DOI: 10.1002/admi.201300131

Atomic and Electronic Structures of Reconstructed Si(100) Surfaces
journal, July 1979


Size-Dependent Spectroscopy of InP Quantum Dots
journal, June 1997

  • Mićić, O. I.; Cheong, H. M.; Fu, H.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 25
  • DOI: 10.1021/jp9704731

Chemical Structure, Ensemble and Single-Particle Spectroscopy of Thick-Shell InP–ZnSe Quantum Dots
journal, January 2018


The Different Nature of Band Edge Absorption and Emission in Colloidal PbSe/CdSe Core/Shell Quantum Dots
journal, December 2010

  • De Geyter, Bram; Justo, Yolanda; Moreels, Iwan
  • ACS Nano, Vol. 5, Issue 1
  • DOI: 10.1021/nn102980e

Mapping the spatial distribution of charge carriers in quantum-confined heterostructures
journal, July 2014

  • Smith, Andrew M.; Lane, Lucas A.; Nie, Shuming
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5506

Size-Dependent Optical Properties of Colloidal PbS Quantum Dots
journal, September 2009

  • Moreels, Iwan; Lambert, Karel; Smeets, Dries
  • ACS Nano, Vol. 3, Issue 10
  • DOI: 10.1021/nn900863a

Crafting Core/Graded Shell-Shell Quantum Dots with Suppressed Re-absorption and Tunable Stokes Shift as High Optical Gain Materials
journal, March 2016

  • Jung, Jaehan; Lin, Chun Hao; Yoon, Young Jun
  • Angewandte Chemie International Edition, Vol. 55, Issue 16
  • DOI: 10.1002/anie.201601198

Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states
journal, January 2009


Absolute electronegativity and hardness: application to inorganic chemistry
journal, February 1988


III–V Nanocrystals Capped with Molecular Metal Chalcogenide Ligands: High Electron Mobility and Ambipolar Photoresponse
journal, January 2013

  • Liu, Wenyong; Lee, Jong-Soo; Talapin, Dmitri V.
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja308200f

Photoconductivity in self-organized InAs quantum dots
journal, November 1998

  • Fan, J. C.; Lin, Y. J.; Chen, Y. F.
  • Journal of Applied Physics, Vol. 84, Issue 9
  • DOI: 10.1063/1.368787

Persistent photoconductivity in quantum dot layers in InAs/GaAs structures
journal, July 2003

  • Kulbachinskii, V. A.; Lunin, R. A.; Kytin, V. G.
  • physica status solidi (c), Vol. 0, Issue 4
  • DOI: 10.1002/pssc.200303073

Sensitive Solution-Processed Bi 2 S 3 Nanocrystalline Photodetectors
journal, November 2008

  • Konstantatos, Gerasimos; Levina, Larissa; Tang, Jiang
  • Nano Letters, Vol. 8, Issue 11
  • DOI: 10.1021/nl802600z

Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport
journal, June 2016

  • Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11924

Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays
journal, February 2012

  • Jeon, Sanghun; Ahn, Seung-Eon; Song, Ihun
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3256

Formation of High Quality InP and InAs Nanocrystals in a Noncoordinating Solvent
journal, September 2002

  • Battaglia, David; Peng, Xiaogang
  • Nano Letters, Vol. 2, Issue 9
  • DOI: 10.1021/nl025687v

Colloidal InP Nanocrystals as Efficient Emitters Covering Blue to Near-Infrared
journal, December 2007

  • Xie, Renguo; Battaglia, David; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 129, Issue 50
  • DOI: 10.1021/ja076363h

Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots
journal, September 1996

  • Guzelian, A. A.; Banin, U.; Kadavanich, A. V.
  • Applied Physics Letters, Vol. 69, Issue 10
  • DOI: 10.1063/1.117605

Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores
journal, October 2000

  • Banin, Uri
  • Journal of the American Chemical Society, Vol. 122, Issue 40, p. 9692-9702
  • DOI: 10.1021/ja001386g

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Implementation and performance of the frequency-dependent G W method within the PAW framework
journal, July 2006


Molecular Oxygen Induced in-Gap States in PbS Quantum Dots
journal, September 2015


Atomistic Model of Fluorescence Intermittency of Colloidal Quantum Dots
journal, April 2014


Single-Crystal and Electronic Structure of a 1.3 nm Indium Phosphide Nanocluster
journal, January 2016

  • Gary, Dylan C.; Flowers, Sarah E.; Kaminsky, Werner
  • Journal of the American Chemical Society, Vol. 138, Issue 5
  • DOI: 10.1021/jacs.5b13214

Works referencing / citing this record:

Role of Interface Chemistry in Opening New Radiative Pathways in InP/CdSe Giant Quantum Dots with Blinking‐Suppressed Two‐Color Emission
journal, June 2019

  • Dennis, Allison M.; Buck, Matthew R.; Wang, Feng
  • Advanced Functional Materials, Vol. 29, Issue 37
  • DOI: 10.1002/adfm.201809111

Tailored near-infrared-emitting colloidal heterostructured quantum dots with enhanced visible light absorption for high performance photoelectrochemical cells
journal, January 2019

  • Channa, Ali Imran; Tong, Xin; Xu, Jing-Yin
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta01052a

Unraveling the role of zinc complexes on indium phosphide nanocrystal chemistry
journal, November 2019

  • McVey, B. F. P.; Swain, R. A.; Lagarde, D.
  • The Journal of Chemical Physics, Vol. 151, Issue 19
  • DOI: 10.1063/1.5128234