skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on June 25, 2020

Title: Parallel replica dynamics simulations of reactions in shock compressed liquid benzene

Abstract

The study of the long-term evolution of slow chemical reactions is challenging because quantum-based reactive molecular dynamics simulation times are typically limited to hundreds of picoseconds. In this work, the extended Lagrangian Born-Oppenheimer molecular dynamics formalism is used in conjunction with parallel replica dynamics to obtain an accurate tool to describe the long-term chemical dynamics of shock-compressed benzene. Langevin dynamics has been employed at different temperatures to calculate the first reaction times in liquid benzene at pressures and temperatures consistent with its unreacted Hugoniot. Our coupled engine runs for times on the order of nanoseconds (one to two orders of magnitude longer than traditional techniques) and is capable of detecting reactions that are characterized by rates significantly slower than we could study before. At lower pressures and temperatures, we mainly observe Diels-Alder metastable reactions, whereas at higher pressures and temperatures we observe stable polymerization reactions.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Purdue Univ., West Lafayette, IN (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1544693
Alternate Identifier(s):
OSTI ID: 1529413
Report Number(s):
LA-UR-19-20743
Journal ID: ISSN 0021-9606
Grant/Contract Number:  
89233218CNA000001; 20170070DR
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 24; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Martinez, Enrique, Perriot, Romain Thibault, Kober, Edward Martin, Bowlan, Pamela Renee, Powell, Michael Stephan, Mcgrane, Shawn David, and Cawkwell, Marc Jon. Parallel replica dynamics simulations of reactions in shock compressed liquid benzene. United States: N. p., 2019. Web. doi:10.1063/1.5092209.
Martinez, Enrique, Perriot, Romain Thibault, Kober, Edward Martin, Bowlan, Pamela Renee, Powell, Michael Stephan, Mcgrane, Shawn David, & Cawkwell, Marc Jon. Parallel replica dynamics simulations of reactions in shock compressed liquid benzene. United States. doi:10.1063/1.5092209.
Martinez, Enrique, Perriot, Romain Thibault, Kober, Edward Martin, Bowlan, Pamela Renee, Powell, Michael Stephan, Mcgrane, Shawn David, and Cawkwell, Marc Jon. Tue . "Parallel replica dynamics simulations of reactions in shock compressed liquid benzene". United States. doi:10.1063/1.5092209.
@article{osti_1544693,
title = {Parallel replica dynamics simulations of reactions in shock compressed liquid benzene},
author = {Martinez, Enrique and Perriot, Romain Thibault and Kober, Edward Martin and Bowlan, Pamela Renee and Powell, Michael Stephan and Mcgrane, Shawn David and Cawkwell, Marc Jon},
abstractNote = {The study of the long-term evolution of slow chemical reactions is challenging because quantum-based reactive molecular dynamics simulation times are typically limited to hundreds of picoseconds. In this work, the extended Lagrangian Born-Oppenheimer molecular dynamics formalism is used in conjunction with parallel replica dynamics to obtain an accurate tool to describe the long-term chemical dynamics of shock-compressed benzene. Langevin dynamics has been employed at different temperatures to calculate the first reaction times in liquid benzene at pressures and temperatures consistent with its unreacted Hugoniot. Our coupled engine runs for times on the order of nanoseconds (one to two orders of magnitude longer than traditional techniques) and is capable of detecting reactions that are characterized by rates significantly slower than we could study before. At lower pressures and temperatures, we mainly observe Diels-Alder metastable reactions, whereas at higher pressures and temperatures we observe stable polymerization reactions.},
doi = {10.1063/1.5092209},
journal = {Journal of Chemical Physics},
number = 24,
volume = 150,
place = {United States},
year = {2019},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on June 25, 2020
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Shock-driven chemistry and reactive wave dynamics in liquid benzene
conference, January 2017

  • Dattelbaum, Dana M.; Sheffield, Stephen A.; Coe, Joshua D.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.4971514

Dynamic Compression of Liquids from Measurements on Strong Shock Waves
journal, April 1957

  • Walsh, John M.; Rice, Melvin H.
  • The Journal of Chemical Physics, Vol. 26, Issue 4
  • DOI: 10.1063/1.1743414

Shock Wave Compression of Benzene, Carbon Disulfide, Carbon Tetrachloride, and Liquid Nitrogen
journal, June 1970

  • Dick, Richard D.
  • The Journal of Chemical Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.1672902

Temperature measurements and an improved equation of state for shocked liquid benzene
journal, May 2013

  • Lacina, D.; Gupta, Y. M.
  • The Journal of Chemical Physics, Vol. 138, Issue 17
  • DOI: 10.1063/1.4803138

Shock Induced Chemistry In Liquids Studied With Ultrafast Dynamic Ellipsometry And Visible Transient Absorption Spectroscopy
journal, October 2012

  • Dang, N. C.; Bolme, C. A.; Moore, D. S.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 42
  • DOI: 10.1021/jp307464w

Phase transitions and chemical transformations of benzene up to 550 °C and 30 GPa
journal, November 1993

  • Cansell, François; Fabre, Denise; Petitet, Jean‐Pierre
  • The Journal of Chemical Physics, Vol. 99, Issue 10
  • DOI: 10.1063/1.465711

Triggering dynamics of the high-pressure benzene amorphization
journal, December 2006

  • Ciabini, Lucia; Santoro, Mario; Gorelli, Federico A.
  • Nature Materials, Vol. 6, Issue 1
  • DOI: 10.1038/nmat1803

Optical spectroscopy and imaging of liquid benzene multiply shocked to 13 GPa
journal, July 2007


Chemical Changes in Liquid Benzene Multiply Shock Compressed to 25 GPa
journal, February 2009

  • Root, S.; Gupta, Y. M.
  • The Journal of Physical Chemistry A, Vol. 113, Issue 7
  • DOI: 10.1021/jp809099w

Shock wave propagation in cubic lattices
journal, May 1966


Ultrafast Chemistry under Nonequilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale
journal, September 2015

  • Wood, Mitchell A.; Cherukara, Mathew J.; Kober, Edward M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 38
  • DOI: 10.1021/acs.jpcc.5b05362

Molecular dynamics simulations of shocked benzene
journal, June 2000

  • Bickham, S. R.; Kress, J. D.; Collins, L. A.
  • The Journal of Chemical Physics, Vol. 112, Issue 22
  • DOI: 10.1063/1.481605

Thermodynamic properties of benzene under shock conditions
journal, June 2008

  • Maillet, Jean-Bernard; Pineau, Nicolas
  • The Journal of Chemical Physics, Vol. 128, Issue 22
  • DOI: 10.1063/1.2917335

The equation of state and nonmetal–metal transition of benzene under shock compression
journal, April 2010

  • Wang, Cong; Zhang, Ping
  • Journal of Applied Physics, Vol. 107, Issue 8
  • DOI: 10.1063/1.3380593

A theoretical study of possible benzene dimerizations under high‐pressure conditions
journal, November 1983

  • Engelke, Ray; Hay, P. Jeffrey; Kleier, Daniel A.
  • The Journal of Chemical Physics, Vol. 79, Issue 9
  • DOI: 10.1063/1.446319

A quantum chemistry study of Diels–Alder dimerizations in benzene and anthracene
journal, July 2009

  • Quenneville, Jason; Germann, Timothy C.
  • The Journal of Chemical Physics, Vol. 131, Issue 2
  • DOI: 10.1063/1.3159542

The parallel replica dynamics method – Coming of age
journal, April 2015


Parallel replica dynamics with a heterogeneous distribution of barriers: Application to n -hexadecane pyrolysis
journal, November 2004

  • Kum, Oyeon; Dickson, Brad M.; Stuart, Steven J.
  • The Journal of Chemical Physics, Vol. 121, Issue 20
  • DOI: 10.1063/1.1807823

Connectivity-Based Parallel Replica Dynamics for Chemically Reactive Systems: From Femtoseconds to Microseconds
journal, October 2013

  • Joshi, Kaushik L.; Raman, Sumathy; van Duin, Adri C. T.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 21
  • DOI: 10.1021/jz4019223

A transient semimetallic layer in detonating nitromethane
journal, December 2007

  • Reed, Evan J.; Riad Manaa, M.; Fried, Laurence E.
  • Nature Physics, Vol. 4, Issue 1
  • DOI: 10.1038/nphys806

Nitrogen-Rich Heterocycles as Reactivity Retardants in Shocked Insensitive Explosives
journal, April 2009

  • Manaa, M. Riad; Reed, Evan J.; Fried, Laurence E.
  • Journal of the American Chemical Society, Vol. 131, Issue 15
  • DOI: 10.1021/ja808196e

Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene
journal, February 2015

  • Cawkwell, M. J.; Niklasson, Anders M. N.; Dattelbaum, Dana M.
  • The Journal of Chemical Physics, Vol. 142, Issue 6
  • DOI: 10.1063/1.4907909

Examining the chemical and structural properties that influence the sensitivity of energetic nitrate esters
journal, January 2018

  • Manner, Virginia W.; Cawkwell, Marc J.; Kober, Edward M.
  • Chemical Science, Vol. 9, Issue 15
  • DOI: 10.1039/c8sc00903a

Transferable density functional tight binding for carbon, hydrogen, nitrogen, and oxygen: Application to shock compression
journal, January 2019

  • Cawkwell, M. J.; Perriot, R.
  • The Journal of Chemical Physics, Vol. 150, Issue 2
  • DOI: 10.1063/1.5063385

Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen
journal, November 2017

  • Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 12
  • DOI: 10.1021/acs.jctc.7b00762

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Time-reversible ab initio molecular dynamics
journal, April 2007

  • Niklasson, Anders M. N.; Tymczak, C. J.; Challacombe, Matt
  • The Journal of Chemical Physics, Vol. 126, Issue 14
  • DOI: 10.1063/1.2715556

Extended Lagrangian Born–Oppenheimer molecular dynamics with dissipation
journal, June 2009

  • Niklasson, Anders M. N.; Steneteg, Peter; Odell, Anders
  • The Journal of Chemical Physics, Vol. 130, Issue 21
  • DOI: 10.1063/1.3148075

Lagrangian formulation with dissipation of Born-Oppenheimer molecular dynamics using the density-functional tight-binding method
journal, July 2011

  • Zheng, Guishan; Niklasson, Anders M. N.; Karplus, Martin
  • The Journal of Chemical Physics, Vol. 135, Issue 4
  • DOI: 10.1063/1.3605303

Car-Parrinello molecular dynamics: Car-Parrinello molecular dynamics
journal, September 2011

  • Hutter, Jürg
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 4
  • DOI: 10.1002/wcms.90

Analysis of Time Reversible Born-Oppenheimer Molecular Dynamics
journal, December 2013

  • Lin, Lin; Lu, Jianfeng; Shao, Sihong
  • Entropy, Vol. 16, Issue 1
  • DOI: 10.3390/e16010110

First principles molecular dynamics without self-consistent field optimization
journal, January 2014

  • Souvatzis, Petros; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 140, Issue 4
  • DOI: 10.1063/1.4862907

Generalized extended Lagrangian Born-Oppenheimer molecular dynamics
journal, October 2014

  • Niklasson, Anders M. N.; Cawkwell, Marc J.
  • The Journal of Chemical Physics, Vol. 141, Issue 16
  • DOI: 10.1063/1.4898803

Energy conserving, linear scaling Born-Oppenheimer molecular dynamics
journal, October 2012

  • Cawkwell, M. J.; Niklasson, Anders M. N.
  • The Journal of Chemical Physics, Vol. 137, Issue 13
  • DOI: 10.1063/1.4755991

Thermostating extended Lagrangian Born-Oppenheimer molecular dynamics
journal, April 2015

  • Martínez, Enrique; Cawkwell, Marc J.; Voter, Arthur F.
  • The Journal of Chemical Physics, Vol. 142, Issue 15
  • DOI: 10.1063/1.4917546

A mathematical formalization of the parallel replica dynamics
journal, January 2012

  • Le Bris, Claude; Lelièvre, Tony; Luskin, Mitchell
  • Monte Carlo Methods and Applications, Vol. 18, Issue 2
  • DOI: 10.1515/mcma-2012-0003

Vibrational spectra in fluoride crystals and glasses at normal and high pressures by computer simulation
journal, January 1992


Molecular dynamics integration and molecular vibrational theory. III. The infrared spectrum of water
journal, May 2005

  • Praprotnik, Matej; Janežič, Dušanka
  • The Journal of Chemical Physics, Vol. 122, Issue 17
  • DOI: 10.1063/1.1884609

Infrared and Raman Spectroscopy from Ab Initio Molecular Dynamics and Static Normal Mode Analysis: The C–H Region of DMSO as a Case Study
journal, August 2015

  • Fischer, Sean A.; Ueltschi, Tyler W.; El-Khoury, Patrick Z.
  • The Journal of Physical Chemistry B, Vol. 120, Issue 8
  • DOI: 10.1021/acs.jpcb.5b03323

Distributed multipole analysis: Methods and applications
journal, December 1985


Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

ReaxFF:  A Reactive Force Field for Hydrocarbons
journal, October 2001

  • van Duin, Adri C. T.; Dasgupta, Siddharth; Lorant, Francois
  • The Journal of Physical Chemistry A, Vol. 105, Issue 41
  • DOI: 10.1021/jp004368u

ReaxFF- l g: Correction of the ReaxFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials
journal, October 2011

  • Liu, Lianchi; Liu, Yi; Zybin, Sergey V.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 40
  • DOI: 10.1021/jp201599t

A reactive potential for hydrocarbons with intermolecular interactions
journal, April 2000

  • Stuart, Steven J.; Tutein, Alan B.; Harrison, Judith A.
  • The Journal of Chemical Physics, Vol. 112, Issue 14
  • DOI: 10.1063/1.481208

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Chemical dimerization of crystalline anthracene produced by transient high pressure
journal, December 1994

  • Engelke, Ray; Blais, Normand C.
  • The Journal of Chemical Physics, Vol. 101, Issue 12
  • DOI: 10.1063/1.467846

Production of a Chemically-Bound Dimer of 2,4,6-TNT by Transient High Pressure
journal, July 2001

  • Engelke, Ray; Blais, Normand C.; Sheffield, Stephen A.
  • The Journal of Physical Chemistry A, Vol. 105, Issue 28
  • DOI: 10.1021/jp010492h