skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First-principles thermodynamic theory of Seebeck coefficients

Abstract

To begin, thermoelectric effects, measured by the Seebeck coefficients, refer to the phenomena in which a temperature difference or gradient imposed across a thermoelectric material induces an electrical potential difference or gradient, and vice versa, enabling the direct conversion of thermal and electric energies. All existing first-principles calculations of Seebeck coefficients have been based on the Boltzmann kinetic transport theory. In this work, we present a fundamentally different method for the first-principles calculations of Seebeck coefficients without using any assumptions of the electron-scattering mechanism, being in contrast to the traditional theory by Cutler and Mott that shows the dependence of the Seebeck coefficient on the scattering mechanisms. It is shown that the Seebeck coefficient is a well-defined thermodynamic quantity that can be determined from the change in the chemical potential of electrons induced by the temperature change and thus can be computed solely based on the electronic density of states through first-principles calculations at different temperatures. The proposed approach is demonstrated using the prototype PbTe and SnSe thermoelectric materials.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1]
  1. The Pennsylvania State Univ., University Park, PA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1544153
Alternate Identifier(s):
OSTI ID: 1484325
Grant/Contract Number:  
FG02-07ER46417; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 98; Journal Issue: 22; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Wang, Yi, Hu, Yong-Jie, Bocklund, Brandon, Shang, Shun-Li, Zhou, Bi-Cheng, Liu, Zi-Kui, and Chen, Long-Qing. First-principles thermodynamic theory of Seebeck coefficients. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.98.224101.
Wang, Yi, Hu, Yong-Jie, Bocklund, Brandon, Shang, Shun-Li, Zhou, Bi-Cheng, Liu, Zi-Kui, & Chen, Long-Qing. First-principles thermodynamic theory of Seebeck coefficients. United States. doi:10.1103/PhysRevB.98.224101.
Wang, Yi, Hu, Yong-Jie, Bocklund, Brandon, Shang, Shun-Li, Zhou, Bi-Cheng, Liu, Zi-Kui, and Chen, Long-Qing. Mon . "First-principles thermodynamic theory of Seebeck coefficients". United States. doi:10.1103/PhysRevB.98.224101. https://www.osti.gov/servlets/purl/1544153.
@article{osti_1544153,
title = {First-principles thermodynamic theory of Seebeck coefficients},
author = {Wang, Yi and Hu, Yong-Jie and Bocklund, Brandon and Shang, Shun-Li and Zhou, Bi-Cheng and Liu, Zi-Kui and Chen, Long-Qing},
abstractNote = {To begin, thermoelectric effects, measured by the Seebeck coefficients, refer to the phenomena in which a temperature difference or gradient imposed across a thermoelectric material induces an electrical potential difference or gradient, and vice versa, enabling the direct conversion of thermal and electric energies. All existing first-principles calculations of Seebeck coefficients have been based on the Boltzmann kinetic transport theory. In this work, we present a fundamentally different method for the first-principles calculations of Seebeck coefficients without using any assumptions of the electron-scattering mechanism, being in contrast to the traditional theory by Cutler and Mott that shows the dependence of the Seebeck coefficient on the scattering mechanisms. It is shown that the Seebeck coefficient is a well-defined thermodynamic quantity that can be determined from the change in the chemical potential of electrons induced by the temperature change and thus can be computed solely based on the electronic density of states through first-principles calculations at different temperatures. The proposed approach is demonstrated using the prototype PbTe and SnSe thermoelectric materials.},
doi = {10.1103/PhysRevB.98.224101},
journal = {Physical Review B},
number = 22,
volume = 98,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Thermoelectricity in Molecular Junctions
journal, March 2007


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Thermoelectric properties of p-type polycrystalline SnSe doped with Ag
journal, January 2014

  • Chen, Cheng-Lung; Wang, Heng; Chen, Yang-Yuan
  • Journal of Materials Chemistry A, Vol. 2, Issue 29, p. 11171-11176
  • DOI: 10.1039/C4TA01643B

Mott's formula for the thermopower and the Wiedemann-Franz law
journal, May 1980


Doping-dependent thermopower of PbTe from Boltzmann transport calculations
journal, May 2010


Electron-phonon contribution to the thermopower of metals
journal, November 1990


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS 2
journal, July 2015

  • Vaskivskyi, Igor; Gospodaric, Jan; Brazovskii, Serguei
  • Science Advances, Vol. 1, Issue 6
  • DOI: 10.1126/sciadv.1500168

The best thermoelectric.
journal, July 1996

  • Mahan, G. D.; Sofo, J. O.
  • Proceedings of the National Academy of Sciences, Vol. 93, Issue 15
  • DOI: 10.1073/pnas.93.15.7436

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material
journal, January 2011

  • LaLonde, Aaron D.; Pei, Yanzhong; Snyder, G. Jeffrey
  • Energy & Environmental Science, Vol. 4, Issue 6
  • DOI: 10.1039/c1ee01314a

Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
journal, July 2008

  • Heremans, J. P.; Jovovic, V.; Toberer, E. S.
  • Science, Vol. 321, Issue 5888, p. 554-557
  • DOI: 10.1126/science.1159725

First-principles calculations of lattice dynamics and thermal properties of polar solids
journal, May 2016


Observation of Anderson Localization in an Electron Gas
journal, May 1969


Record Seebeck coefficient and extremely low thermal conductivity in nanostructured SnSe
journal, February 2015

  • Serrano-Sánchez, F.; Gharsallah, M.; Nemes, N. M.
  • Applied Physics Letters, Vol. 106, Issue 8
  • DOI: 10.1063/1.4913260

Thermodynamic description of heat and spin transport in magnetic nanostructures
journal, January 2006

  • Gravier, Laurent; Serrano-Guisan, Santiago; Reuse, François
  • Physical Review B, Vol. 73, Issue 2
  • DOI: 10.1103/PhysRevB.73.024419

High-performance bulk thermoelectrics with all-scale hierarchical architectures
journal, September 2012

  • Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.
  • Nature, Vol. 489, Issue 7416, p. 414-418
  • DOI: 10.1038/nature11439

ABINIT: First-principles approach to material and nanosystem properties
journal, December 2009


Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa
journal, April 2000


BoltzTraP. A code for calculating band-structure dependent quantities
journal, July 2006


Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

A mixed-space approach to first-principles calculations of phonon frequencies for polar materials
journal, April 2010


Engineering half-Heusler thermoelectric materials using Zintl chemistry
journal, May 2016

  • Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy
  • Nature Reviews Materials, Vol. 1, Issue 6
  • DOI: 10.1038/natrevmats.2016.32

SnSe: a remarkable new thermoelectric material
journal, January 2016

  • Zhao, Li-Dong; Chang, Cheng; Tan, Gangjian
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01755J

Mixed-space approach for calculation of vibration-induced dipole-dipole interactions
journal, June 2012


Thermodynamics of Thermoelectric Phenomena and Applications
journal, August 2011

  • Goupil, Christophe; Seifert, Wolfgang; Zabrocki, Knud
  • Entropy, Vol. 13, Issue 8
  • DOI: 10.3390/e13081481

Effect of quantum-well structures on the thermoelectric figure of merit
journal, May 1993


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Thermopower enhancement in lead telluride nanostructures
journal, September 2004

  • Heremans, Joseph P.; Thrush, Christopher M.; Morelli, Donald T.
  • Physical Review B, Vol. 70, Issue 11
  • DOI: 10.1103/PhysRevB.70.115334

Assessment of the thermoelectric performance of polycrystalline p-type SnSe
journal, May 2014

  • Sassi, S.; Candolfi, C.; Vaney, J.-B.
  • Applied Physics Letters, Vol. 104, Issue 21, Article No. 212105
  • DOI: 10.1063/1.4880817

Spin-entropy contribution to thermopower in the [ C a 2 Co O 3 t ] 0.62 ( Co O 2 ) misfits
journal, September 2015


High-throughput exploration of alloying as design strategy for thermoelectrics
journal, August 2015


High-temperature electron-band calculations
journal, January 1977


Materials for thermoelectric energy conversion
journal, April 1988


Transport coefficients from first-principles calculations
journal, September 2003


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Thermodynamic theory of transport processes in semiconductors
journal, May 1996

  • Parrott, J. E.
  • IEEE Transactions on Electron Devices, Vol. 43, Issue 5
  • DOI: 10.1109/16.491259

Linear optical properties in the projector-augmented wave methodology
journal, January 2006


Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Temporal behavior of an atom-cavity system in two distinct regimes
journal, January 2016


Self-interaction correction to density-functional approximations for many-electron systems
journal, May 1981


Thermal Properties of the Inhomogeneous Electron Gas
journal, March 1965


First principles methods using CASTEP
journal, January 2005

  • Clark, Stewart J.; Segall, Matthew D.; Pickard, Chris J.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 220, Issue 5/6
  • DOI: 10.1524/zkri.220.5.567.65075

Kelvin formula for thermopower
journal, November 2010


A first-principles approach to finite temperature elastic constants
journal, May 2010


Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe
journal, November 2015


Structure and temperature transformation of SnSe. Stabilization of a new cubic phase Sn4Bi2Se7
journal, January 1998

  • Adouby, K.; Pérez-Vicente, C.; Jumas, J. C.
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 213, Issue 6
  • DOI: 10.1524/zkri.1998.213.6.343

Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013